Welcome to UVM ECHO:
Treatment of Diabetes Mellitus Type II

Facilitators: Mark Pasanen MD, Liz Cote
August 27, 2020
“Introduction” to ZOOM

• Please mute microphone when not speaking
• Please use camera as much as possible
• Test both audio & video before joining
• Communicate clearly during clinic:
 • Can use “raise hand” feature to comment
 • Speak clearly
 • Use chat function for technical issues
CME disclosures

University of Vermont Office of Continuing Medical and Interprofessional Education is approved as a provider of Continuing Medical Education (CME) by the ACCME. UVMCME designates this educational activity for a maximum of 1.0 Category 1 Credits towards the AMA Physicians Recognition Award.

Interest Disclosures:

• As an organization accredited by the ACCME to sponsor continuing medical education activities, UVMCME is required to disclose any real or apparent conflicts of interest (COI) that any speakers may have related to the content of their presentations.
Disclosures: None or will be resolved

Planners:
- Elizabeth Cote
- Mark Pasanen, MD
- Charles MacLean, MD

Faculty/Guest Faculty:
- Shreya Amin, MD
- Kaitlyn Barrett, DO
- Matthew Gilbert, DO
- Jack Leahy, MD
- Muriel Nathan, MD
- Mark Pasanen, MD
- Joel Schnure, MD
- Amy Shah, DO
- Kelsey Sheahan, MD
ECHO Series
Overview of Diabetes Care: ADA Guidelines
Kelsey Sheahan, MD
August 27, 2020
STANDARDS OF MEDICAL CARE IN DIABETES—2020
Diabetes: A Growing Problem

- At least **68% of people** 65 years or older with diabetes will die from some form of **heart disease**, and they are 2-4 times more likely to die from heart disease compared to those without diabetes (American Heart Association)
The Importance of Diabetes Control

• Historically we have seen convincing evidence that improved glycemic control can reduce the microvascular complications of diabetes but its effects of macrovascular complications was mixed:
 • UK Prospective Diabetes Study (UKPDS) initially found no CV mortality benefit with more intensive treatment, but 10-year follow up suggested a potential ‘legacy effect’ of early tight glycemic control leading to later reductions in MI and death (Holman et al NEJM 2008)
 • Veterans Affairs Diabetes Trial (VADT) showed no cardiovascular benefit with better glycemic control (normal HgA1c vs target 8-9%) both initially and in the long-term follow up data (Reaven et al NEJM 2019)
Diabetes Control

- Complicating this was the ACCORD (Action to Control Cardiovascular Risk in Diabetes) trial in 2008 which found intensive glycemic control (HgA1c <6% vs 7-7.9%) had no effect on CV events and even increased mortality, with the 9 year follow up showing no mortality difference but an increase in CV related deaths in the intensive control group (Accord study group, Diabetes Care 2016)
A History of Diabetes Guidelines

• The 2017 ADA Guidelines consisted of this familiar diagram recommending metformin monotherapy and then advancing to any non-insulin medication

• This has shifted drastically given the cardiovascular outcomes trials (CVOTs) of SGLT-2i and GLP-1 RA

SGLT-2 Inhibitors

- Sodium glucose transporter 2 inhibitors (SGLT2i) inhibit these transporters that act to reabsorb glucose in the proximal tubule of the kidney.
- As we start to understand and use these medications more, they have shown favorable secondary effects on the heart, kidneys, and others.

Summary of kidney outcomes from completed placebo-controlled SGLT2 inhibitor outcome trials in patients with Type 2 Diabetes (4-9)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>CANVAS program (n = 10,142)</th>
<th>DECLARE-TIMI 58 (n = 17,180)</th>
<th>EMPA-REG outcome (n = 7,020)</th>
<th>CREENCE (n = 4,401)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C inclusion criteria</td>
<td>A1C 7.0-10.5%</td>
<td>A1C 6.5-12.0%</td>
<td>A1C 7.0-10.0%</td>
<td>A1C 6.5-12.0%</td>
</tr>
</tbody>
</table>
| **Additional inclusion criteria** | Preexisting cardiovascular disease if ≥30 years of age or ≥2 cardiovascular risk factors if ≥30 years of age | Preexisting cardiovascular disease or multiple risk factors for atherosclerotic cardiovascular disease | Preexisting cardiovascular disease | eGFR of 30 to <90 mL/min/1.73m²²
| | | | | UACR>300-5,000 mg/g |
| | | | | Receiving a stable dose of an ACE inhibitor or ARB for ≥14 weeks prior to randomization |
| % with history of cardiovascular disease | 85.6 | 40.6 | 99 | 50.4 |
| Mean eGFR (mL/min/1.73m²) | 76.5 | 85.3 | 74.1 | 56.2 |
| UACR group (mg/g) | <30: 70% | <30: 69% | <30: 60% | <30: 1% |
| | 30-300: 22% | 30-300: 24% | 30-300: 29% | 30-300: 11% |
| | >300: 8% | >300: 7% | >300: 11% | >300: 88% |
| **Primary outcome(s) (HR [95% CI])** | 3-point MACE 0.96 (0.75-0.97) | 3-point MACE 0.90 (0.84-1.00) | 3-point MACE 0.86 (0.74-0.99) | Primary composite kidney and cardiovascular outcome^a 0.70 (0.59-0.82) |
| **Key kidney outcomes (HR [95% CI])** | Progression of albuminuria^b 0.73 (0.67-0.79) | ≥40% decrease in eGFR to <60, end-stage kidney disease, or kidney-related death 0.53 (0.43-0.66) | Doubling of serum creatinine accompanied by eGFR of <45, initiation of kidney replacement therapy, or kidney-related death 0.54 (0.40-0.75) | End-stage kidney disease, doubling of serum creatinine level, or renal death 0.66 (0.53-0.81) |
| | 40% reduction in eGFR, kidney replacement therapy, or kidney-related death 0.60 (0.47-0.77) | End-stage kidney disease 0.31 (0.13-0.79) | Incident or worsening nephropathy 0.61 (0.53-0.70) | End-stage kidney disease 0.68 (0.54-0.88) |
| | | Initiation of kidney replacement therapy 0.45 (0.21-0.97) | Dialysis, kidney transplantation, or renal death 0.72 (0.54-0.97) |

^a Primary composite kidney and cardiovascular outcome includes: all-cause death, end-stage kidney disease, initiation of kidney replacement therapy, doubling of serum creatinine level, or renal death.

^b Progression of albuminuria defined as 30% increase in urinary albumin excretion.

DAPA-HF

• Secondary outcomes of CVOTs among SGLT-2i suggested benefit in reducing hospitalizations for heart failure, prompting this trial, published in 2019

• RCT of 4744 patients with NYHA class II or above with EF<40%, only 42% of patients with diabetes, treated with dapagliflozin vs placebo looking at the primary outcome of worsening heart failure, a composite of hospitalization or urgent visit requiring IV therapy for heart failure or cardiovascular death

GLP-1 Receptor Agonists

- Glucagon-like peptide 1 is an incretin hormone released from the distal ileum and colon within minutes of a meal and enhances insulin production and secretion in a glucose-dependent fashion, but also exerts many other effects including decreasing glucagon secretion, increasing glucose uptake and glycogen synthesis in peripheral tissues, delays gastric emptying and increases satiety.
CVOTs for GLP-1 RA

<table>
<thead>
<tr>
<th>GLP-1 RA: Study name</th>
<th>No. of patients</th>
<th>Median follow-up (years)</th>
<th>% with CV disease*</th>
<th>% of statin use</th>
<th>Baseline age</th>
<th>Baseline HgA1c</th>
<th>Primary composite CV outcome HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lixisenatide: ELIXA</td>
<td>6068</td>
<td>2.1</td>
<td>100%</td>
<td>93%</td>
<td>60.3</td>
<td>7.7%</td>
<td>1.02 (0.89 to 1.17)</td>
<td>0.81</td>
</tr>
<tr>
<td>Liraglutide: LEADER</td>
<td>9340</td>
<td>3.8</td>
<td>81%</td>
<td>72%</td>
<td>64.3</td>
<td>8.7%</td>
<td>0.87 (0.78 to 0.97)</td>
<td>0.01</td>
</tr>
<tr>
<td>Semaglutide: SUSTAIN-6</td>
<td>3297</td>
<td>2.1</td>
<td>60%</td>
<td>73%</td>
<td>64.6</td>
<td>8.7%</td>
<td>0.74 (0.58 to 0.95)</td>
<td>0.02</td>
</tr>
<tr>
<td>Exenatide QW: EXSCEL</td>
<td>14752</td>
<td>3.2</td>
<td>73.1%</td>
<td>74%</td>
<td>62.0</td>
<td>8.0%</td>
<td>0.91 (0.83 to 1.00)</td>
<td>0.06</td>
</tr>
<tr>
<td>Albiglutide: Harmony</td>
<td>9463</td>
<td>1.6</td>
<td>100%</td>
<td>84%</td>
<td>64.1</td>
<td>8.7%</td>
<td>0.78 (0.68 to 0.90)</td>
<td>0.0006</td>
</tr>
<tr>
<td>Dulaglutide: REWIND</td>
<td>9901</td>
<td>5.4</td>
<td>31.5%</td>
<td>66%</td>
<td>66.2</td>
<td>7.2%</td>
<td>0.88 (0.79 to 0.99)</td>
<td>0.026</td>
</tr>
<tr>
<td>Oral semaglutide: PIONEER 6</td>
<td>3183</td>
<td>1.3</td>
<td>84.7%</td>
<td>85%</td>
<td>66.0</td>
<td>8.2%</td>
<td>0.79 (0.57 to 1.11)</td>
<td>0.17</td>
</tr>
</tbody>
</table>

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CHF OR CKD

CONSIDER INDEPENDENTLY OF BASELINE A1C OR INDIVIDUALIZED A1C TARGET

ASCVD PREDOMINATES

- Established ASCVD
- Indicators of high ASCVD risk (age ≥55 years with coronary, carotid or lower extremity artery stenosis >50%, or LVH)

PREFERABLY
- GLP-1 RA with proven CVD benefit
- OR
- SGLT2i with proven CVD benefit if eGFR adequate

HF OR CKD PREDOMINATES

- Particularly HFpEF (LVEF <45%)
- CKD: Specifically eGFR 30-60 mL/min/1.73 m² or UACR >30 mg/g, particularly UACR >300 mg/g

PREFERABLY
- SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate
- OR
- If SGLT2i not tolerated or contraindicated or if eGFR less than adequate add GLP-1 RA with proven CVD benefit
COMPPELLING NEED TO MINIMIZE WEIGHT GAIN OR PROMOTE WEIGHT LOSS

EITHER/ OR

GLP-1 RA with good efficacy for weight loss

SGLT2

If A1C above target

SGLT2

GLP-1 RA with good efficacy for weight loss
Poorly Controlled Diabetes

But what about patients with very poorly controlled diabetes?
A1c of 9.5%? 11%? 14%?
First Injectable Medication: GLP-1 RA

- We now have data showing that GLP-1 RA are equally efficacious if not superior to once daily insulin in HgA1c reduction, and it is recommended that these medications be the first injectable medication
 - Caveat being if A1c > 10%, BG >300 or evidence of ongoing catabolism (weight loss, symptoms), consider starting insulin early
- Meta-analysis from 2017 included 11 RCTs that evaluated GLP-1 RA versus once daily insulin

Questions?

Thank you!
Cases/HIPAA

- Names
- Address
- DOB
- Phone/Fax #
- Email address
- Social Security #
- Medical Record #
<table>
<thead>
<tr>
<th>Dates</th>
<th>Session</th>
<th>Didactic Topics (in addition to case review)</th>
</tr>
</thead>
</table>
| August 13 | TeleECHO Session #1 | • Project ECHO Orientation
• Anatomy of an ECHO session
• Newly diagnosed DM2
 • Types of diabetes |
| August 27 | TeleECHO Session #2 | • Overview of Diabetic Care
 • ADA guidelines |
| September 10 | TeleECHO Session #3 | • Approach to glycemic control
 • Sulfonylureas, metformin
 • Continuous Glucose Monitors (CGM) |
| September 24 | TeleECHO Session #4 | • GLP1 agonists/DPP4 inhibitors |
| October 8 | TeleECHO Session #5 | • SGLT 2 inhibitors |
| October 22 | TeleECHO Session #6 | • Insulin 101 |
| November 12 | TeleECHO Session #7 | • Advanced insulin |
| December 10 | TeleECHO Session #8 | • ASCVD prevention:
 • Lipids, HTN, ASA |
| January 14 | TeleECHO Session #9 | • Complications:
 • Screening
 • Prevention |
| January 28 | TeleECHO Session #10 | • Special Populations:
 • Elderly, pregnancy
 • Adherence |
ECHO Reminders

• Volunteers to present cases
 • Use the case presentation form template
• Please complete evaluation forms for each session
 • CME will be processed once session evaluation form is received at UVM
• UVM Project ECHO materials available at www.vtahec.org
• Please contact us with any questions/suggestions
 • Mark.Pasanen@uvmhealth.org
 • Elizabeth.Cote@uvm.edu
 • ahec@uvm.edu