PHRM 240 Molecules & Medicine – Principles of Drug Design

Fall Semester 2021

Dr. Wolfgang Dostmann, Professor of Pharmacology, Larner College of Medicine

Syllabus
This 3-credit course conveys the molecular mechanisms by which drugs act in the body and the principles drug design. It highlights the importance of medicinal chemistry as it overlaps with the disciplines of chemistry, biochemistry, microbiology, cell biology, and pharmacology.

Most lectures are split into two parts. Part 1 lasts 40-45 minutes and loosely follows the flow of the textbook. Following a short questions/answers break, Part 2 will be more relaxing, and we will take a trip back in time and review an example of the “Most important drugs in history”. These are world changing, famous compounds that have had a significant impact on civilization.

Prerequisites
Organic Chemistry and Background in Biology or Biochemistry or Permission

Course Director
Wolfgang Dostmann, Department of Pharmacology, Given B303B
wdostman@uvm.edu

Time and Place
Tuesdays and Thursdays 11:40 am – 12:55 pm, Stafford Hall 101

Office Hours
By appointment only

Format
All lectures will be in-person in Stafford 101 and also available remotely through Windows Teams. All lecture materials (recorded lectures, ppt files, handouts, etc.) will be made available through Blackboard.

Note: attendance during lectures and live streaming is not mandatory (you can watch the lectures later, should you have time conflicts).

Required Textbook
An Introduction to Medicinal Chemistry (6th Ed), Graham L. Patrick, Oxford Press, 2017. This textbook is required for the class. The course is tightly structured along this awesome book, which is not just a great read but also a valuable resource. You can buy it easily online, and you should do so now. You will be asked to prepare certain chapter(s) before each lecture.
Handouts
I will post handouts before each lecture. The handouts are detailed and usually contain learning objectives, when appropriate background information not in your textbook, web links and, chemical structures to memorize. Most importantly, the handouts contain lots and lots of study questions including detailed answers to the study questions.

Examination Format
Throughout the course students will be taking four, 60-minute exams. All exams are essentially cumulative. All exam questions will be multiple choice and strictly follow the format from the study questions.

Extra Credit
All Students who wish to obtain extra credit can do so by submitting up to two papers on a subject approved by the course director. Each paper is approximately worth an additional 5-7% of any of your exams (equivalent of a full letter grade bump).

Graduate Students taking the course for graduate school credit will have to submit an additional term paper on a drug considered to be one of the most important drugs in history. Students will be graded (pass/fail) on the thoroughness and quality of their paper.

Extra Credit Format
All Students
- Undergraduate and graduate students who wish to obtain extra credit can do so by submitting up to two papers on a drug approved by me (submit your choice by email).
- Students will be graded 1-10 points on the thoroughness and quality of their paper.
- Points will be added to the lowest scored exam (a paper scoring 10 points would be worth the equivalent of a full letter grade bump).
- If possible, the paper(s) should include the drug’s discovery, structure, chemical properties, synthesis, SAR, biological effects, and historical significance.
- Here are the specifics: 6-8 pages, 1-inch margins, 1.5 space, 11 font.
- Figures do not count towards the page limit.
- References at the end; they are not counted towards the page limitation.
- Figures are welcome.
- The structure of the drug is required.
- Papers are due at midnight at the day of the final exam.
- For every day past the due date, a point will be subtracted.
- Submit your paper as pdf to wdostman@uvm.edu

Graduate Students
Students taking the course for graduate school credit are required to submit an additional term paper on a drug approved by me.
- Format and specifics same as above.
- Students will be graded (pass/fail) on the thoroughness and quality of their paper.
Course Schedule

Part I: Drug Targets

08/31 Lecture 1:
Introduction
Intermolecular bonding forces
Most important drugs in history: Salvarsan

09/02 Lecture 2:
Proteins: Structure/Function
Enzymes: Structure/Function
Most important drugs in history: Penicillin

09/07 Lecture 3:
Receptors: Structure/Function
Receptors: Signal Transduction
Most important drugs in history: 6-Mercaptopurine

09/09 Lecture 4:
Nucleic acids: structure and function
Most important drugs in history: Thalidomide

09/14 Lecture 5:
Enzymes and Receptors as drug targets

09/16 **EXAMINATION 1**

09/21 Lecture 6:
Nucleic acids as drug targets
Most important drugs in history: Ivermectin

09/23 Lecture 7:
Pharmacokinetics I
Most important drugs in history: Hydrocortisone

09/28 Lecture 8:
Pharmacokinetics II
Most important drugs in history: Librium

Part II: Drug discovery, design and development

09/30 Lecture 9:
Drug discovery: finding a lead I
Most important drugs in history: AZT

10/05 Lecture 10:
Drug discovery: finding a lead II
Most important drugs in history: Cyclosporine
10/07 Lecture 11: Rational Approaches to Lead Discovery I
 Most important drugs in history: Thorazine

10/12 Lecture 12: Rational Approaches to Lead Discovery II

10/14 EXAMINATION 2

10/19 Lecture 13: Drug design: optimizing target interactions
 Most important drugs in history: Sumatriptan I

10/21 Lecture 14: Drug design: optimizing access to the target I
 Most important drugs in history: Sumatriptan II

10/26 Lecture 15: Drug design: optimizing access to the target II
 Most important drugs in history: Quinine I

10/28 Lecture 16: Drug Design: Novel design strategies
 Most important drugs in history: Quinine II

Part III: Selected topics in medicinal chemistry
11/02 Lecture 17: Anti-ulcer agents I
 Most important drugs in history: Cimetidine

11/04 Lecture 18: Anti-ulcer agents II
 Most important drugs in history: Omeprazole

11/09 EXAMINATION 3

11/11 Lecture 19: The challenges of getting a drug to the market I

11/16 Lecture 20: The challenges of getting a drug to the market II

11/18 Lecture 21: Antibiotics I
 Most important drugs in history: Sofosbuvir
11/23 No Class - Thanksgiving Recess

11/25 No Class - Thanksgiving Recess

11/30 Lecture 22:
 Antibiotics I
 Most important drugs in history: Artemisinin

12/07 Lecture 23:
 Opioid analgesics I
 Most important drugs in history: Methadone

12/09 Lecture 24:
 Opioid analgesics II
 Most important drugs in history: Fentanyl

12/14 EXAMINATION 4 1:30pm – 4:15pm