Transcatheter Aortic Valve Replacement

June 2, 2015 6:00-7:00 UVM Community Medical School Series

Harold Dauerman, MD Professor of Medicine and Surgery Director, Cardiovascular Services University of Vermont Medical Center

Disclosures

- Research grants from Medtronic (Corevalve Trials and Registries), Abbott Vascular
- Consulting for Medtronic, Edwards, Boston Scientific

 Contact Information: <u>harold.dauerman@uvmhealth.org</u> 802-847-3602

Aortic Stenosis is a Disease of A Heart Valve

About the Heart

How the Heart Works

A healthy heart beats approximately 100,000 times a day and pumps about five quarts of blood each minute, or 75 gallons (284 liters) every hour.

A normal heart has four chambers. The upper two chambers are the right and left atria. The lower two chambers are the right and left ventricles. The heart's job is to supply the body with oxygen-rich blood. Blood is pumped through the four chambers with the help of four heart valves—the tricuspid, pulmonary, mitral and aortic valves.

> Pulmonary Valve – Right Upper Chamber – (Right Atrium) Tricuspid Valve –

Right Lower Chamber (Right Ventricle)

Aortic Stenosis is not a New Disease: Leonardo Da Vinci

Aortic Stenosis is a Blockage of A Heart Valve which Limits Blood Flow to Your Body

Symptoms of Severe AS

Signs and symptoms of severe AS can include:

- Chest pain or tightness
- · Feeling faint or fainting with activity
- Dizziness
- Fatigue
- Shortness of breath
- · Irregular heart beat (palpitations)
- Unusual sound heard during a heartbeat (murmur)

Normal Valve

Stenotic Valve

Calcific Aortic Stenosis is a Disease of the Elderly

- Mechanism of stenosis is similar to atherosclerosis¹
 - Mainly solid calcium deposits within the valve cusps
 - Similar risk factors to Coronary Artery Disease (CAD)
 - High coincidence of CAD and AS in same individual²
 - 6th, 7th, and 8th decades of life

¹Otto CM, Lind BK, et al. Circulation 1994; 90: 844-53.

²Otto CM, Lind BK, et al. New Eng J Med 1999; 341: 142-147.

What Causes Aortic Stenosis in Less Common Adults

More Common

Congenital Abnormality Rheumatic Fever Age-Related Calcific Aortic Stenosis

Images courtesy of John Webb, MD at St. Paul's Hospital and Renu Virmahi, MD at the CVPath Institute

Aortic Stenosis Prevalence

- Aortic Stenosis (AS) is the most prevalent native valve disease¹
- Prevalence:²
 - 2% of people over 65
 - 3% of people over 75
 - 4% of people over 85
- Over 100,000 people in the U.S. are diagnosed with severe aortic stenosis each year³
- Prevalence of AS and co-morbidities that increase the risk of surgical valve replacement, increase with age¹

1. lung B, Eur Heart J. 2003;24:1231-1243.

2. Stewart BF. J Am Coll Cardiol. 1997;29:630-634.

3. Medtronic Data on File.

Population at Risk for Aortic Stenosis is Increasing

Over 40 Million People in the US Over the Age of 65¹

- Aortic stenosis is estimated to be prevalent in up to 7% of the population over the age of 65²
- Between 1990 and 2020, the population from 65 – 74 years will increase 74%
- 80% of adults with symptomatic aortic stenosis are male³

Population: 1960 to 2050

Intervention and Life Expectancy of the Elderly

Hornick, et al. Clin Geriatr Med. 2006;22:499-513.

Severe Aortic Stenosis Is Life Threatening and Progresses Rapidly

- After the onset of symptoms, patients with severe aortic stenosis have a survival rate as low as 50% at 2 years and 20% at 5 years without aortic valve replacement²
- The PARTNER Trial demonstrated that 50% of inoperable patients died within 1 year without a valve replacement

Symptoms of Aortic Stenosis

- Shortness of breath
- Angina
- Fatigue
- Syncope or presyncope
- Other
 - Rapid or irregular heartbeat

Sandy Actual TAVR Patient Pre-Procedure Inoperable

-Palpitations

The symptoms of aortic disease are commonly misunderstood by patients as 'normal' signs of aging. Many patients initially appear asymptomatic, but on closer examination up to 37% exhibit symptoms.

Aortic Stenosis: Symptoms May Be Subtle in the Elderly

- Angina, Shortness of Breath and Syncope
- Onset of dyspnea and other heart failure symptoms foretell the worst outlook for aortic stenosis patients¹

¹Carabello BA, Paulus WJ. Lancet 2009; 373: 956-66.

Ross J, Braunwald E. Circulation 1968; 38: 61-67.

Aortic Stenosis Diagnosis is Not Difficult: Starts with a Heart Murmur on Exam

¹Gorlin R, Gorlin SG. Am Heart J 1951; 41: 1-29.

Aortic Stenosis: Prevention is Unlikely

Intensive Lipid Lowering with Simvastatin and Ezetimibe in Aortic Stenosis

Anne B. Rossebø, M.D., Terje R. Pedersen, M.D., Ph.D., Kurt Boman, M.D., Ph.D., Philippe Brudi, M.D., John B. Chambers, M.D., Kenneth Egstrup, M.D., Ph.D., Eva Gerdts, M.D., Ph.D., Christa Gohlke-Bärwolf, M.D., Ingar Holme, Ph.D., Y. Antero Kesäniemi, M.D., Ph.D., William Malbecq, Ph.D., Christoph A. Nienaber, M.D., Ph.D., Simon Ray, M.D., Terje Skjærpe, M.D., Ph.D., Kristian Wachtell, M.D., Ph.D., and Ronnie Willenheimer, M.D., Ph.D., for the SEAS Investigators*

Rossebo NEJM 2008

Aortic Valve Surgery: Life Saving Therapy

¹Schwartz F, Bauman P, et al. Circulation 1982; 66: 1105-10.

Aortic Stenosis is a Fatal Disease

- Despite frequent BAV, standard therapy did not alter the dismal course of disease for inoperable patients in The PARTNER Trial
 - 50% died within 1 year
 - 94% died within 5 years

Worse Prognosis than Many Metastatic Cancers

 5 year survival of breast cancer, lung cancer, prostate cancer, ovarian cancer and severe inoperable aortic stenosis

Treatment: Surgical

Surgical treatment of AS may have operative mortality of less than 5%

STS National Executive Summary 2009

An Under-diagnosed and Under-treated Disease

Studies show at least 40% of severe aortic stenosis (SAS) patients are not treated with an AVR

Are There Any Other Options? Balloon Aortic Valvuloplasty

Aortic Valvuloplasty: Temporary Benefit Only

Event-free Survival*, n=165

* Freedom from death, AVR, or repeat BAV

Lieberman, JACC, 1994.

What if You Could Implant a New Valve Percutaneously?

The Edwards Sapien Valve

Alain Cribier: First Human Transcatheter Valve Replacement (2002)

Circulation April 2002

Absolute Reduction in Mortality in Inoperable Patients

The Edwards SAPIEN valve significantly improves survival

21.8% absolute reduction in mortality

Despite expert care and frequent BAV, standard therapy failed to alter the dismal natural course of disease

* In an age and gender matched US population without comorbidities, the mortality at 5 years is 40.5%.

NEJM 2011

TAVR in Extreme Risk Patients: High Death Rate in Both Arms

Table.Interventional Cardiology Trials at the Extreme ofMortality

Characteristics	SHOCK ^₅	PARTNER B6*		
Study design	Randomized clinical trial	Randomized clinical trial		
Years of enrollment	<mark>1</mark> 993–1998	2007-2009		
Randomized sample size, n	302	358		
Primary end point	Death at 30 d	Death at 1 y		
Expected mortality in control group	75% at 30 d	37.5% at 1 y		
Expected impact of novel therapy	20% Absolute reduction in death at 30 d	12.5% Absolute reduction in death at 1 y		
Achieved mortality in the novel treatment arm	47% at 30 d	31% at 1 y		
Primary end point achieved	No	Yes		
Key secondary end point	Significant mortality reduction with early revascularization at 6-mo follow-up	Significant mortality reduction with TAVR persisting for 3 y		
Exploratory subgroup analyses	No benefit of early revascularization in the elderly	No benefit of TAVR in patients with STS score > 15%		
Subsequent or planned confirmatory trials	No	No		

Dauerman HL Circulation 2014

Transcatheter Aortic Valve Replacement: Process

Transcatheter Aortic Valve Replacement: Process

Corevalve: All Cause Mortality or Major Stroke

* Calculated rate for 117 events in 179 patients (65.4%, lower confidence bound of 57.9% by Exact method) (Makkar RR, et al, New Engl J Med, 2012)

Extreme Risk Study | Iliofemoral Pivotal Results – TCT 2014

Quality of Life Improvement 2 Years after Corevalve Extreme Risk TAVR

92% of Patients Improved at Least 1 NYHA Class by 2 Years 58% of Patients Improved at Least 2 NYHA Classes by 2 Years

Extreme Risk Study | Iliofemoral Pivotal Results – TCT 2014

Corevalve High Risk Trial

TAVR Superior to Surgical AVR: Corevalve High Risk Trial

Complications Associated with TAVR

- Stroke (major, minor)
- Paravalvular leak
- Conduction System Abnormalities
- Vascular Access Complications
- Valve Embolization and Malposition

24 Hours SICU Stay

PARTNER High Risk: Stroke

30 Days

1 Year

Outcome	TAVR (N = 348)	AVR (N = 351)	p-value	TAVR (N = 348)	AVR (N = 351)	p-value
All Stroke or TIA – no. (%)	19 (5.5)	8 (2.4)	0.04	27 (8.3)	13 (4.3)	0.04
TIA – no. (%)	3 (0.9)	1 (0.3)	0.33	7 (2.3)	4 (1.5)	0.47
All Stroke – no. (%)	16 (4.6)	8 (2.4)	0.12	20 (6.0)	10 (3.2)	0.08
Major Stroke – no. (%)	13 (3.8)	7 (2.1)	0.20	17 (5.1)	8 (2.4)	0.07
Minor Stroke – no. (%)	3 (0.9)	1 (0.3)	0.34	3 (0.9)	2 (0.7)	0.84
Death/maj stroke – no. (%)	24 (6.9)	28 (8.2)	0.52	92 (26.5)	93 (28.0)	0.68

Corevalve High Risk Trial: Stroke

High Risk Study | US Pivotal Trial

CoreValve U.S. Pivotal Trial High Risk Study Low Rate of Leaky Valve (Paravalvular Leak)

The Product:

Conforming Frame

The CoreValve Nitinol frame conforms and seals to the non-circular annulus

The Proof:

Low Rates of Moderate/Severe PVL¹

The CoreValve device demonstrates low moderate and severe paravalvular leak rates

1. Adams DH, Popma JJ, Reardon MJ, et al. Transcatheter aortic valve replacement with a self-expanding prosthesis [published online ahead of print March 29, 2014]. New Engl J Med 2014;doi:10.1056/NEJMoa1400590.

UVM Volume Growth of TAVR

Edwards SAPIEN XT Transcatheter Heart Valve

The Edwards SAPIEN XT Transcatheter Heart Valve, model 9300TFX, systems are indicated for relief of aortic stenosis in patients with **symptomatic heart disease due to severe native calcific aortic stenosis** (aortic valve area $\leq 1.0 \text{ cm}^2$ or aortic valve area index $\leq 0.6 \text{ cm}^2/\text{m}^2$, a mean aortic valve gradient of $\geq 40 \text{ mmHg}$, or a peak aortic-jet velocity of $\geq 4.0 \text{ m/s}$), and with native anatomy appropriate for the 23, 26, or 29 mm valve system, who are judged by a heart team, including a cardiac surgeon, to be at **high or greater risk for open surgical therapy** (i.e., Society of Thoracic Surgeons operative risk score $\geq 8\%$ or at a $\geq 15\%$ risk of mortality at 30 days).

Selecting the Right Patients: Aortic Annulus and CT Angio/Echo

Photographs courtesy of Nicolo Piazza, MD

Patient Evaluation at Heart Valve Clinic

Example of Testing Conducted at a Heart Valve Clinic

- CT Scan
- Echo
- Labs
- EKG
- Physical Exam
- STS Score
- Independent Living
- Gait Test/Grip Strength
- MMSE2
- NY Heart Failure Class
- Catheterization

Tilley Drive UVM Cardiology

The Art of Selecting Patients For TAVR

- Prevalence of frailty increases with aging; old does not necessarily equal frail
- Elderly patients achieve measurable benefit from cardiac surgery, particularly in terms of:
 - Quality of life
 - Increased survival
 - Prevention of adverse cardiovascular events
- The "Eyeball Test": Nursing Home, Wheel Chair, Frequent Falls?

Same age (90) and predicted risk (12%)

One passes the "eyeball test," one does not

TAVR Heart Team Concept

Multidisciplinary approach ensures:

- Patient centric care
- Thorough assessment by a team of specialists
- Collaborative treatment decision

UVM TAVR Coordinator: Faye Straight, RN Faye.straight@uvmhealth.org

Anatomic Features Important for TAVR Sizing

Primary Features:

- The aortic annulus
- The sinuses of Valsalva
- The ascending aorta

Secondary Features:

- Coronary artery ostia
- Left ventricular outflow tract (LVOT)

- [A] Annulus Diameter
- [B] Sinus of Valsalva Width
- [C] Ascending Aorta Diameter
- [D] Sinus of Valsalva Height
- [E] Frame Height (≈ 5 cm)

Choosing Appropriate Patients: Vascular Access via CT angiography

Dimensional Analysis

- Measure both left and right iliac and femoral artery axial views to identify minimum diameters
- Measure and record both minimum (minor) and orthogonal (perpendicular) diameters
 Ø Right Femoral
 Ø Right Iliac

Direct Aortic Approach Delivery Trajectory

Identify desired access location and pathway

TAVR Has Real Risks

Reduction in Vascular Complications: Next Generation TAVR Devices

	SAPIEN (n=271)		SAPIEN X (n=282)		
Events	n	%	n	%	
Vascular:					
Major	43	15.9	32	11.3	
Bleeding:					
Disabling	34	12.6	22	7.8	

Major vascular complications reduced by 25% with next generation device

Sheath Size Comparison

Corevalve Randomized Trial Complications

Events*	1 Month			1 Year		
	TAVR	SAVR	P Value	TAVR	SAVR	P Value
Vascular complications (major), %	5.9	1.7	0.003	6.2	2.0	0.004
Pacemaker implant, %	19.8	7.1	<0.001	22.3	11.3	<0.001
Bleeding (life threatening or disabling), %	13.6	35.0	<0.001	16.6	38.4	<0.001
New onset or worsening atrial fibrillation, %	11.7	30.5	<0.001	15.9	32.7	<0.001
Acute kidney injury, %	6.0	15.1	<0.001	6.0	15.1	<0.001

*Percentages reported are Kaplan-Meier estimates and log-rank P values

Real World SAPIEN Valve Outcomes

30 day STS/ACC TVT Registry Data (Nov 2011 - May 2013):

- 7,710 patients treated at 224 centers
- Median Age of 84

STS/ACC TVT Registry

- Patient Risk Profile
 - 20% Inoperable / 80% High-Risk

Outcomes (In Hospital)	Overall (n=7,710)
Death (Any Cause)	5.5%
Stroke	2.0%
Moderate or Severe Aortic Insufficiency	8.5%
Major Bleeding (VARC)	3.5%
New Permanent Pacemaker	6.6%
Hospital Duration, Median Days	6

TAVR and Quality Assurance at UVM

Executive Summary

TVT Registry™

The University of Vermont Medical Center (186373) compared to Rolling Four Quarters (R4Q) for US Hospitals ending 2014Q4

Section I: Transcatheter Aortic Valve Replacement (TAVR) Quality Metrics

2014 AHA/ACC Valvular Heart Disease Guidelines

- In the absence of serious comorbid conditions, aortic valve replacement (AVR) is indicated in the majority of symptomatic patients with severe aortic stenosis
- Because of the risk of sudden death, AVR should be performed promptly after the onset of symptoms
- Consultation with or referral to a Heart Valve Center of Excellence is reasonable when discussing treatment options for:
 - Asymptomatic patients with severe valvular heart disease
 - Patients with multiple comorbidities for whom valve intervention is considered.
- Age is not a contraindication to surgery
- If surgery is contraindicated, TAVR recommended (extreme risk patients)
- If patient is high risk for surgery, TAVR is a reasonable option

Nishimura RA, Otta CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J Am Coll Cardiol. 2014;63:e57-185.

Valve in Valve TAVR: A Growing Indication

New TAVR Indications: April 2015

CoreValve is Indicated for Symptomatic Patients with a Failed Surgical Bioprosthetic Aortic Valve

The Medtronic CoreValve[™] system is indicated for use in patients with symptomatic heart disease due to either severe native calcific aortic stenosis **or failure (stenosed, insufficient, or combined) of a surgical bioprosthetic aortic valve** who are judged by a heart team, including a cardiac surgeon, to be at high or greater risk for open surgical therapy (i.e., Society of Thoracic Surgeons operative risk score ≥8% or at a ≥15% risk of mortality at 30 days).

physicia

Mortality in Lower Risk Patients: STS ≤7%: Corevalve High Risk Trial

Ongoing UVM Research: CoreValve[®] SURTAVI Trial Revised Enrollment: 3% or higher risk per CT surgeon.

- Evaluate the safety and efficacy of TAVI in Subjects with severe, symptomatic AS at intermediate surgical risk by randomizing Subjects to either SAVR or TAVI with the Medtronic CoreValve[®] System
- Enrolling approximately 2,500 Subjects randomized 1:1 to TAVI and SAVR in up to 75 European, Canadian, and US centers.

TAVR: A 10 Year Story of Technology and Treatment

TAVR Conclusions: Evolution of a Minimally Invasive Option

- Aortic Stenosis is a fatal disease of the elderly
- TAVR saves lives in patients with no surgical option or at high risk for open heart surgery.
- TAVR technology is evolving to address small but real risk of complications including stroke and bleeding.
- Next steps: TAVR in lower risk patients, TAVR in two days.