Contents lists available at ScienceDirect

The Journal of Arthroplasty

journal homepage: www.arthroplastyjournal.org

Systematic Review and Meta-Analysis

Is Preoperative *Staphylococcus aureus* Screening and Decolonization Effective at Reducing Surgical Site Infection in Patients Undergoing Orthopedic Surgery? A Systematic Review and Meta-Analysis With a Special Focus on Elective Total Joint Arthroplasty

Ana I. Ribau, MD ^{a, *}, Jamie E. Collins, PhD ^b, Antonia F. Chen, MD, MBA ^b, Ricardo J. Sousa, MD, PhD ^{a, c}

^a Department of Orthopedics, Centro Hospitalar do Porto, Porto, Portugal

^b Department of Orthopaedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

^c Porto Bone and Joint Infection Group (GRIP), Centro Hospitalar do Porto and Grupo TrofaSaude - Hospital em Alfena, Portugal

ARTICLE INFO

Article history: Received 14 May 2020 Received in revised form 4 August 2020 Accepted 6 August 2020 Available online 14 August 2020

Keywords: periprosthetic joint infection screening Staphylococcus aureus surgical site infection decolonization cost-effectiveness

ABSTRACT

Background: Staphylococcus aureus is a major pathogen implicated in orthopedic infections worldwide. Preoperative decolonization has been promoted but different strategies present mixed results. Thus, the goals of this study are to determine (1) whether *S aureus* screening and/or decolonization is effective at reducing surgical site infection in orthopedic surgery, (2) with a special focus on elective total joint arthroplasty (TJA), and (3) which preoperative *S aureus* screening/treatment strategy is most cost-effective for TJA.

Methods: PubMed, Ovid MEDLINE, and Cochrane databases were searched on January 1, 2020, using a systematic strategy. We included papers with data comparing surgical site infection and periprosthetic joint infection rate in orthopedic surgery and/or elective total hip and knee arthroplasty patients before/ after *S aureus* screening and/or decolonization protocol and papers evaluating the cost-effectiveness of different *S aureus* screening/treatment strategies.

Results: A total of 1260 papers were screened, and 32 papers were ultimately included. Results showed an increased risk of developing any infection (relative risk [RR] = 1.71 ± 0.16) and *S aureus* infection (RR = 2.79 ± 0.45) after orthopedic surgery without previous nares and whole-body decolonization. Focusing exclusively on elective TJA, there was an increased risk of developing any infection (RR = 1.70 ± 0.17) and *S aureus* infection (RR = 2.18 ± 0.41) if no decolonization is performed. All strategies appeared to be cost-effective, although universal decolonization without screening seemed to be the most advantageous.

Conclusion: Preoperative *S aureus* screening/decolonization protocol lowered the risk of infection after elective orthopedic and TJA surgeries. However, further studies are needed to determine optimal clinical and cost-effective methodologies.

© 2020 Elsevier Inc. All rights reserved.

One or more of the authors of this paper have disclosed potential or pertinent conflicts of interest, which may include receipt of payment, either direct or indirect, institutional support, or association with an entity in the biomedical field which may be perceived to have potential conflict of interest with this work. For full disclosure statements refer to https://doi.org/10.1016/j.arth.2020.08.014.

* Reprint requests: Ana I. Ribau, MD, Department of Orthopaedics, Centro Hospitalar do Porto - Hospital de Santo António, Largo Professor Abel Salazar, 4099-001 Porto, Portugal. Staphylococcus aureus (S aureus) is a major pathogen implicated in orthopedic infections worldwide, and approximately 20%-30% of the general orthopedic population are methicillin-sensitive S aureus (MSSA) carriers with 1%-5% methicillin-resistant S aureus (MRSA) carriers [1–6]. The anterior nasal cavity is the main site of colonization [5,7]. It has been shown throughout literature that patients who carry this bacteria in their commensal flora are at increased risk of infection in a multitude of clinical scenarios,

https://doi.org/10.1016/j.arth.2020.08.014 0883-5403/© 2020 Elsevier Inc. All rights reserved.

including elective orthopedic surgery [5,8–12]. There is evidence that *S aureus* nasal carriers who develop surgical site infections (SSIs) may present great individual concordance between the nares and infected surgical site isolates, confirming the existence of an important endogenous contamination pathway [13,14].

S aureus nares colonization is a modifiable risk factor, as many elective surgical patients undergo preoperative screening and/or treatment protocols to potentially reduce infection rates, including surgical procedures such as elective total joint arthroplasty (TJA) surgery [15]. However, the efficacy and cost-effectiveness of this intervention have mixed results in literature. Some studies have demonstrated decreased rates of periprosthetic joint infection (PJI) and increased cost-effectiveness with screening and decolonization, while other studies have demonstrated no changes in infection rate (SSI/PJI) when MSSA/MRSA screening and decolonization are implemented [16–18].

Thus, the purposes of this systematic review and meta-analysis are (1) to determine whether preoperative *S aureus* screening and/ or decolonization is effective at reducing SSI in orthopedic surgery; (2) to determine whether preoperative *S aureus* screening and/or decolonization is effective at reducing PJI in patients undergoing elective TJA; and (3) to evaluate which preoperative *S aureus* screening/treatment strategy is most cost-effective for reducing PJI in patients undergoing TJA.

Methods

A systematic review and meta-analysis was performed to evaluate the efficacy of preoperative MSSA/MRSA decolonization at reducing infection in orthopedic surgery patients.

Search Methodology

Search terms were developed using PICO methodology and were designed to maximize sensitivity of the literature search: P—("Knee replacement" OR "Hip replacement" OR "Joint replacement" OR "Knee arthroplasty" OR "Hip arthroplasty" OR "Joint arthroplasty" OR "Knee prost*" OR "Hip prost*" OR "Joint prost*"); AND I—("Staphylococ* screening" OR "Staphylococ* carrier" OR "aureus"); AND O—("Periprosthetic joint infection" OR Prosthetic joint infection" OR "Prosthesis-related infections" OR "Surgical site infection" OR "Joint infection").

A database search was performed on January 1, 2020, through PubMed, Ovid MEDLINE, and Cochrane, and all references were considered regardless of the date of publication. When assessing full text(s) for eligibility, reference list(s) were also screened for additional papers.

Inclusion and Exclusion Criteria

Several different strategies have been adopted in literature regarding the screening and treatment of preoperative *S aureus* colonization. The following inclusion and exclusion criteria were adopted. The inclusion criteria were as follows:

- 1) Data comparing SSI/PJI rate in orthopedic surgery and/or elective total hip and knee arthroplasty patients before/after *S aureus* screening and/or decolonization protocol
- 2) Papers evaluating the cost-effectiveness of different *S* aureus screening/treatment strategies
- 3) Full text availability

The Exclusion Criteria Were as Follows

- Studies with results on MRSA SSI/PJI rates exclusively and not providing information on overall infection rates (including methicillin-sensitive *S aureus*)
- 2) Full manuscript not available (eg, abstracts presented at conferences)
- 3) Language other than those accessible to the authors (English, French, Spanish, or Portuguese)

When discrepancies arose between authors regarding eligibility, a discussion between senior authors (A.C. and R.S.) was used to establish a consensus.

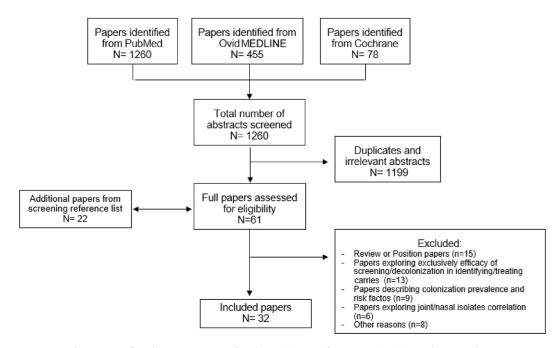


Fig. 1. PRISMA flow diagram. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

753

Downloaded for Anonymous User (n/a) at University of Vermont from ClinicalKey.com by Elsevier on March 14, 2021. For personal use only. No other uses without permission. Copyright ©2021. Elsevier Inc. All rights reserved.

Literature Search

The literature search results are presented in Figure 1, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. The systematic search identified 1260 potentially relevant articles. After reviewing titles and reading abstracts, 1199 duplicates and irrelevant papers were excluded. Ultimately, 61 papers were retrieved for more detailed analysis and 22 additional papers were selected from screening references. From this selection of 83 papers, 51 papers were excluded.

Fifteen were excluded because they were reviews or position papers. The most common reason for exclusion was not reporting postoperative SSI/PJI rates: (a) 13 papers explored the efficacy of different screening methodologies or the success in achieving *S aureus* eradication in carriers; (b) 9 papers described the prevalence of carriage and risk factors for colonization; and (c) 6 papers explored the correlation between nasal and joint infection isolates exclusively. One paper was excluded because it presented earlier partial results [19] on a similar cohort of patients that were published later [20]. For one other paper, the final results were reported from a bundled triple intervention (*S aureus* preoperative decolonization, vancomycin prophylaxis, and intraoperative betadine irrigation), making it impossible to extract data exclusively evaluating the worth of *S aureus* screening alone [21]. Other papers were

Table 1

Characteristics of Studies Included in the Impact of *Staphylococcus aureus* Screening and Decolonization on SSI in All Orthopedic Procedures Including but Not Limited to Elective Total Joint Arthroplasty.

Author	Year of Publication	Country of Origin	Screening Methodology	Screening Rate	<i>S aureus</i> Carriers Overall	MRSA Carriers	Study End Point(s)
Nasal decolonization only							
Gernaat-van der Sluis et al [26]	1998	Netherlands	Screening not performed	_	_	_	Wound infections as set by the CDC
Kalmeijer et al [27]	2002	Netherlands	Nasal swab cultures	91%	91/614 (29.5%)	N/R	SSI according to CDC definition up to 30 d
Wilcox et al [28]	2003	UK	Screening not performed	_	_	_	SSI defined by surgeon and laboratory
Coskun and Aytac [29]	2004	Turkey	Screening not performed	_	_	_	SSI according to CDC definition
Price et al [5]	2008	USA	Nasal swab cultures	N/R	86/284 (30.3%)	5/284 (1.8%)	Deep and superficial SSI according to CDC definition
Hacek et al [30]	2008	USA	Nasal swab PCR confirmed by cultures	84%	223/912 (24.4%)	N/R	Deep and superficial SSI according to CDC definition
Hadley et al [31]	2010	USA	Nasal swab cultures	80%	409/1644 (24.9%)	58/1644 (3.5%)	Deep SSI according to CDC definition
Nasal and skin decolonization							
Pofahl et al [32]	2009	USA	Nasal swab PCR confirmed by cultures	>75%	N/R	367/5094 (7.2%)	SSI according to CDC definition
Kim et al [3]	2010	USA	Nasal swab cultures for MSSA and PCR for MRSA	N/R	1897/7019 (27.0%)	309/7019 (4.4%)	SSI up to 30 d
Bode et al [33]	2010	Netherlands	Nasal swab real-time PCR	N/R	1251/6771 (18.5%)	N/R	Healthcare-associated S aureus infections
Rao et al [20]	2011	USA	Nasal swab cultures	89%	321/1285 (25.0%)	43/1285 (3.3%)	SSI up to 2 y
Murphy et al [34]	2011	UK	Nose, throat, and groin swab cultures	N/R	N/R	108/5933 (1.8%)	Deep and superficial SSI according to WHO definition
Barbero Allende et al [35]	2014	Spain	Nasal swab cultures	91.8%	102/382 (26.7%)	N/R	PJI up to 1 y
Schweizer et al [36]	2015	USA	Nasal swab cultures or PCR (hospital discretion)	N/R	1933/13,127 (14.7%)	367/13,127 (2.8%)	SSI according to CDC definition up to 90 d
Baratz et al [1]	2015	USA	Nasal swab cultures for MSSA and PCR for MRSA	N/R	644/3434 (18.8%)	158/3434 (4.6%)	SSI according to CDC definition
Malcolm et al [4]	2015	USA	Nasal swab cultures or PCR	56.7%	573/2291 (25.0%)	115/2291 (5.0%)	Revision arthroplasty for infection
Ramos et al [37]	2016	USA	Nasal swab cultures	N/R	2519/13,828 (18.2%)	N/R	SSI up to 1 y or 90 d
Sporer et al [38]	2016	USA	Nasal swab cultures	99%	2742/9791 (28.0%)	284/9791 (2.9%)	SSI up to 30 d
Sousa et al [6]	2016	Portugal	Nasal swab cultures	79%	228/1028 (22.2%)	8/1028 (0.8%)	PJI up to 1 y
Barbero et al [2]	2017	Spain	Nasal swab cultures	80%	87/384 (22.6%)	16/384 (4.2%)	PJI up to 1 y
Tandon et al [39]	2017	UK	Multiple site cultures	N/R	N/R	83/6613 (1.3%)	Deep SSI up to 1 y
Jeans et al [40]	2018	UK	Nose and groin swab cultures	N/R	N/R	N/R	Public Health England's standard superficial, deep, and organ-space infection
Pelfort et al [41]	2019	Spain	Nasal swab cultures	N/R	15/403 (18.7%)	8/403 (1.9%)	SSI according to CDC definition
Romero-Palacios et al [42]	2019	Canada	Nasal and throat swab cultures	N/R	424/1883 (22.5%)	N/R	Deep/organ-space PJI up to 1 y

SSI, surgical site infection; MRSA, methicillin-resistant *S aureus*; MSSA, methicillin-susceptible *S aureus*; PCR, polymerase chain reaction; N/R, not reported; CDC, Centers for Disease Control and Prevention; PJI, periprosthetic joint infection; WHO, world Health Organization.

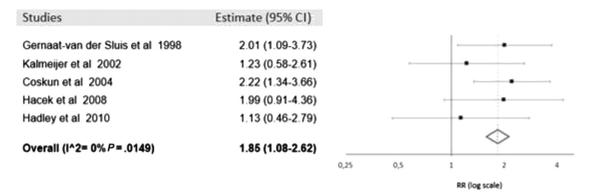


Fig. 2. Forest plots showing the relative risk (RR) of infection control vs nasal decolonization for all orthopedic procedures. CI, confidence interval.

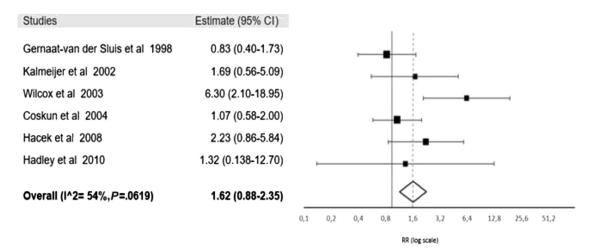


Fig. 3. Forest plots showing the RR of S aureus infection control vs nasal decolonization for all orthopedic procedures.

excluded because they evaluated *S aureus* carriage as a risk factor for postoperative infection, but did not supply any information on screening/decolonization results. Three other papers were excluded because they reported on the impact of MRSA exclusively and did not offer any MSSA results [22–24].

Ultimately, 24 papers were included in the analysis for the overall orthopedic surgery, 15 papers for the TJA analysis, and 8 for cost-effectiveness review.

Data Extraction

Two reviewers independently extracted data. Variables recorded included the name of the first author, year of publication, country of origin, targeted population, type of intervention and study design, preoperative treatment regimen, perioperative antibiotic prophylaxis policy, screening methodology and success rate when available, overall *S aureus* and MRSA carriage prevalence, and the end point(s) used in each paper. Data regarding SSI/PJI considering all pathogens and/or considering only *S aureus* SSI/PJI were extracted differentiating MSSA/MRSA carriers from noncarriers and control groups, whenever possible.

Papers included in the cost-effectiveness analysis were also evaluated and the following variables were recorded: name of the first author, year of publication, country of origin, methodology used for analysis, real or assumed prevalence of *S aureus* carriage, real or assumed prevalence of baseline PJI, real or assumed impact

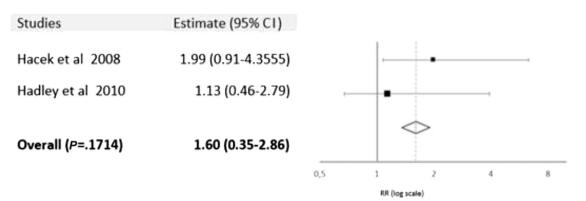


Fig. 4. Forest plots showing the RR of infection control vs nasal decolonization in total joint arthroplasty.

on decrease in SSI/PJI rate and of major cost-effectiveness finding(s).

Statistical Analysis

We used a logistic random-effects model to create an overall combined estimate of infection across all studies and to evaluate the effect of intervention on infection. I-square was used to assess heterogeneity. We did this separately for overall infection and *S aureus* infection, for overall elective orthopedic surgery, and TJA only. This approach allows for studies with zero cells (ie, 0% incidence rate) without requiring an ad hoc adjustment [25]. All analyses were conducted using SAS 9.4 (SAS Institute, Cary, NC).

Results

A summary of the main characteristics of all studies included in the meta-analyses is presented in Table 1. The overall *S aureus* carriage rate ranged from 15% to 30%, and the MRSA carriage was lower at 1%-7% depending on geography and screening methodology.

Nasal Decolonization Only

Three prospective [5,27,31] and 4 retrospective studies [26,28-30] that focused on preoperative nasal decolonization only (without extensive skin decolonization) were evaluated. Papers where a single preoperative shower with triclosan or chlorhexidine was performed were included in this group, as this single shower is considered routine clinical practice and is not specific to *S aureus* decolonization protocols.

The majority of these papers reported on elective orthopedic surgery, but not necessarily TJA or even those that used metal implants. Most adopted a universal treatment with no screening strategy [26–29,31]. Hacek et al [30] treated carriers exclusively and Price et al [5] offered treatment to identified carriers resulting in a cohort of known untreated carriers. All prospective studies found a trend toward reduced infection rates, but none reached statistical significance [5,27,31]. Retrospective studies demonstrated a significantly reduced overall infection rate [26,29], and *S aureus* infection rates were significantly lower in the intervention group that received *S aureus* screening and nares decolonization [28–30].

When all studies were aggregated together, the relative risk (RR) of developing any infection after orthopedic surgery without *S* aureus nares decolonization was 1.85 \pm 0.28 (standard error, 95% confidence interval [CI], 1.08-2.62; $\Gamma^2 = 0\%$; *P* = .015) (Fig. 2). The RR for specifically developing an *S* aureus infection after surgery without *S* aureus nares decolonization was 1.62 \pm 0.29 (standard deviation, 95% CI, 0.88-2.35; $\Gamma^2 = 54\%$; *P* = .062) (Fig. 3). A table summarizing information on papers included in this analysis is available as supplemental material in the appendix (Table A.1).

When focusing on TJA exclusively, the RR of developing any infection after surgery without *S aureus* nares decolonization was 1.60 \pm 0.45 (standard error, 95% CI, 0.35-2.86; *P* = .171) (Fig. 4). It was not possible to calculate RR for specifically developing *S aureus* infections in TJA patients as data were only extracted out of 2 papers (Table 2) [30,31].

Nasal and Skin Decolonization

Papers that reported on *S aureus* screening and concomitant nasal and whole-body decolonization procedures for multiple days were mostly before and after intervention studies, although 2 prospective randomized trials [6,33] were found.

	b		,	· · · · · · · · · · · · · · · · · · ·	,	-					
Author	Target	Type of	Treatment	Perioperative	Overall Infection	ion		S aureus Infection	tion		Major Finding(s)
	Population	Intervention/ Study	Regimen	Antibiotic Prophylaxis	Control	Intervention	P Value	Control	Intervention	P Value	
Hadley et al,	Primary total	Universal	5-d Course of	Cefazolin or	Unscreened	21/1644	809.	MRSA	MRSA	NS	- Staphylococci decolonization
2010 [31]	knee or hip	treatment	intranasal	clindamycin if	6/414	(1.28%)		1/414	3/1644		led to a 13% decrease in
	arthroplasty	Prospective	mupirocin	ß-lactam allergy	(1.45%)			(0.24%)	(0.18%)		deep SSI which did not reach
		cohort	regardless of	(or vancomycin if							statistical significance
			screening result	MRSA carrier)							
Hacek et al,	Elective hip/	Selective	5-d Course of	Cefazolin for hip/	Unscreened	Noncarriers	≤.05	Unscreened	Noncarriers	.∖ 1.	- S aureus SSI rate in the
2008 [30]	knee joint	carrier's	intranasal	vancomycin for	14/583	7/689		10/583	4/689		intervention group was
	arthroplasty	treatment	mupirocin	knee up to 24 h	(2.4%)	(1.0%)		(1.7%)	(0.6%)		reduced compared to control
		Retrospective	twice a day			Treated carriers			Treated carriers		group—0.8% (7/912) vs 1.7%
		before and after				4/223			3/223		(10/583), but it did not reach
		intervention				(1.8%)			(1.3%)		statistical significance
											- Assuming a similar
											proportion of carriers and
											SSI rate among noncarriers,
											authors calculate about 8 SSI
											cases were prevented by the
											intervention
J			v UUV v UV V		50 U I I.						

Table :

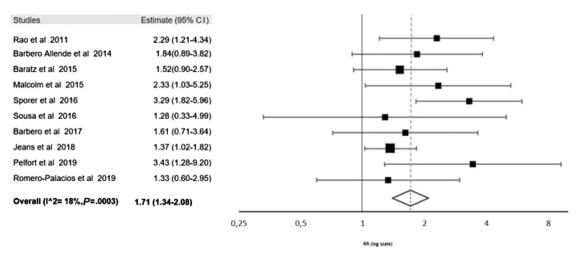


Fig. 5. Forest plots showing the RR of infection control vs nasal and skin decolonization for all orthopedic procedures.

Some studies reported on orthopedic surgery including spine and sports medicine [3,34,37] as well as trauma [2,35] and not elective TJA. Universal screening and selectively treating identified carriers were the widely dominant strategy [1–4,6,20,32–36,38–42], and only 1 paper presented on results after a universal treatment approach [37]. Overall, *S aureus* carriers were mostly evaluated, while some papers specifically focused on MRSA carriers [32,34,39]. The vast majority of decolonization protocols included preoperative nasal mupirocin treatment and chlorhexidine baths, except one study that used nasal povidoneiodine for a portion of the cohort instead of mupirocin [37] and one that used octenidine as an alternative to chlorhexidine baths [40].

When all studies were aggregated together, the RR of developing any infection after orthopedic surgery without *S aureus* nares and whole-body decolonization was 1.71 \pm 0.16 (standard error, 95% CI, 1.34-2.08; $\Gamma 2 = 18\%$; *P* < .001) (Fig. 5). The RR for specifically developing an *S aureus* infection after surgery without *S aureus* nares and whole-body decolonization was 2.79 \pm 0.45 (standard error, 95% CI, 1.78-3.81; $\Gamma 2 = 19\%$; *P* < .001) (Fig. 6). A table summarizing information on papers included in this analysis is available as supplemental material in the appendix (Table A.2).

When focusing exclusively on TJA, we were able to extract data out of 13 papers that were included in a specific analysis (Table 3) [1,4,6,20,32,34,36–42]. The RR of developing any infection after TJA without *S* aureus nares and whole-body decolonization was 1.70 \pm 0.17 (standard error, 95% CI, 1.32-2.09; $\Gamma^2 = 27\%$; *P* < .001) (Fig. 7). The RR for specifically developing an *S* aureus infection after TJA without *S* aureus nares and whole-body decolonization was 2.18 \pm 0.41 (standard error, 95% CI, 1.22-3.13; $\Gamma^2 = 88\%$; *P* = .004) (Fig. 8).

Risk Reduction on S aureus Carriers

A further analysis was made in an attempt to determine whether the risk of infection for treated carriers lowered to baseline noncarrier levels after treatment.

When all studies were aggregated together, the RR of developing any infection after orthopedic surgery was not significantly different when comparing noncarriers and treated carriers— 1.31 ± 0.41 (standard error, 95% Cl, 0.02-2.60; $\Gamma^2 = 0\%$; P = .445) (Fig. 9). However, the RR of specifically developing *S aureus* infection carriers was significantly higher— 4.64 ± 0.13 (standard error, 95% Cl, 1.37-7.91; $\Gamma^2 = 76\%$; P = .002) even after treatment when compared to noncarriers (Fig. 10).

We were not able to perform a similar analysis focusing exclusively on TJA due to the lack of enough detailed information.

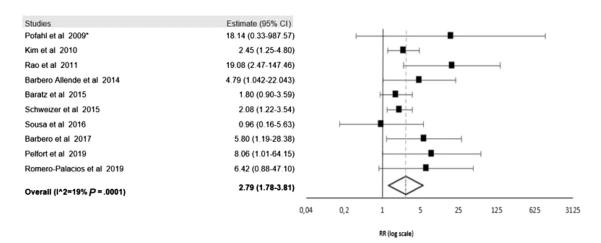


Fig. 6. Forest plots showing the RR of *S aureus* infection control vs nasal and skin decolonization for all orthopedic procedures (*approximate RRs—study with zero cells, applying a continuity correction of 0.25).

Staphylococcus aureus Screening With Concomitant Nasal and Skin Decolonization Results in Reducing Infection in Total Joint Arthroplasty Patients.

Author	Target	Type of	Treatment	Perioperative	Overall Infec	ction		S aureus Infe	ection		Major Finding(s)
	Population	Intervention/ Study	Regimen	Antibiotic Prophylaxis	Control (%)	Noncarriers (%)	Treated Carriers (%)	Control (%)	Noncarriers (%)	Treated Carriers (%)	
Pofahl et al, 2009 [32]	Elective hip/ knee joint arthroplasty ^a	Selective MRSA carrier's treatment Retrospective before and after intervention	Intranasal mupirocin twice daily 5 d before surgery + chlorhexidine baths on days 1, 3, and 5	Prophylaxis changes in MRSA carriers at surgeon discretion	_	_		6/1979 (0.3%)	0/1436 (0.0%)		 Reduction in MRSA SSI was most pronounced in orthopedics (hip and knee prostheses) where it reacher statistical significance The rate in MSSA SSI did no change significantly in any group
Rao et al, 2011 [20]	Elective total joint arthroplasty	Selective carrier's treatment Retrospective before and after intervention	Intranasal mupirocin twice a day + daily chlorhexidine baths 5 d before surgery	Cefazolin (vancomycin if MRSA carrier or ß-lactam allergy) up to 24 h	Historic 20/741 (2.7%)	17/1440 (1.2%)		Historic 11/741 (1.5%) Concurrent 19/2284 (0.8%)	1/964 (0.1%)	0/321 (0.0%)	 This paper has 2 contrigroups: historic before intervention of the same surgeons and concurrent in the same time period of a different group of surgeons. Overall infection rai (including superficial and deep infection and nonstaphylococcal infections) decreased significantly during the intervention period Considering only deep S rate of the same surgeons before and after the intervention, overall infectior rate—1.2% (9/741) vs 0.6% (1440) and S aureus infection
Murphy et al, 2011 [34]	Elective hip/ knee joint arthroplasty ^b	Selective MRSA carrier's treatment Retrospective before and after intervention	intranasal mupirocin 3 times a day +	Cefuroxime (vancomycin if MRSA carrier)	_			_	15/1993 (0.8%)	4/56 (7.1%)	 Patients with negative rescreening after treatment underwent surgery within a mo (positive rescreens were excluded) Deep sepsis rate in lower limb joint arthroplasties was significantly higher among MRSA previously carriers—7.4% (2/27) in total hip and 6.9% (2/29) in total knee—than among non-carriers—1.1% (11/982) in total hip and 0.4% (4/1011) total knee—despite confirmed successful preop
Schweizer et al, 2015 [35]	Primary hip or knee arthroplasty ^c	Selective carrier's treatment Multicenter retrospective before and after intervention	Intranasal mupirocin twice a day + daily chlorhexidine baths 5 d before surgery	Cefazolin or cefuroxime (vancomycin if MRSA carrier)	_	_		66/20,642 (0.32%)	17/11,059 (0.15%)		 communed successful preoperative decolonization The rate of complex <i>S</i> aureus SSI, but not all <i>S</i> aureus SSI decreased significantly after hip or knee arthroplasties (17/10,000 operations) The decrease in overall S rate considering all

Baratz et al, 2015 [1]	Elective primary and revision hip or knee arthroplasty	Selective carrier's treatment Retrospective before and after intervention	Intranasal mupirocin twice a day + daily chlorhexidine baths 5 d before surgery	Cefazolin (plus vancomycin if MRSA carrier or ß-lactam allergy) up to 24 h	33/3080 (1.1%)	17/2763 (0.6%)	All carriers 7/644 (1.1%) MRSA carriers 4/158 (2.5%) MSSA carriers 2/486 (0.4%)	21/3080 (0.7%)	13/3434 (0.4%)		 pathogens and all surgeries did not reach statistical significance There were no differences in infection risk between the protocol group and the historic control group
Malcolm et al, 2016 [4]	Primary hip or knee arthroplasty	Selective carrier's treatment Retrospective after intervention	Topical mupirocin twice daily for 3 d + chlorhexidine body wipes preoperatively	Cefazolin (or vancomycin if MRSA carrier or ß-lactam allergy) up to 24 h	Unscreened 16/1751 (0.9%)	8 cases (0.4%)	(0.4%) MRSA carriers 0 cases (0.0%) MSSA carriers 1 case (0.3%)	_	_	_	 Rates of revision arthroplasty for any reason after at least 1 y was similar among screened and unscreened cohorts—1.0% (22/2291) vs 1.4% (25/1751) Risk of revision due to PJI was significantly higher in unscreened compared to screened patients—0.9% (16/ 1751) vs 0.4% (9/2,2291) After screening and decolonization, there were no differences in overall or revision due to PJI between preoperative carriers and noncarriers
Ramos et al, 2016 [37]	Elective primary hip or knee arthroplasty ^d	Universal treatment Retrospective after intervention	5-d Course of intranasal mupirocin or nasal povidone- iodine the day of surgery + chlorhexidine gluconate wipes the night before surgery	Vancomycin if MRSA carrier	_	THA (0.4%) TKA (0.7%)	THA 8/939 (0.8%) TKA 18/912 (2.0%)	_	_	_	 S aureus preoperative colonization was a significant risk factor for SSI among total knee but not total hip MRSA carriers had higher risk of infection than MSSA carriers—2.7%(10/367) vs 1.2% (26/2152)
Sporer et al, 2016 [38]	Elective primary total joint arthroplasty	Selective carrier's treatment Retrospective before and after intervention	Intranasal mupirocin twice daily + daily chlorhexidine baths 5 d before admission	Cefazolin (vancomycin if MRSA carrier or ß-lactam allergy) up to 24 h	16/1443 (1.1%)	33/9791 (0.34%)		_	_		 SSI rate was significantly lower after initiation of nasal screening—0.34% vs 1.1%. SSI rate dramatically decreased in the first year of implementation <i>S aureus</i> was involved in PJI less frequently after intervention although it did not reach statistical significance—66.7% vs 33.3%
Sousa et al, 2016 [6]	Elective primary hip/ knee joint arthroplasty	Selective carrier's treatment Single-center randomized controlled trial	Intranasal mupirocin twice a day + daily chlorhexidine baths in the 5 d before surgery	Cefazolin (plus vancomycin if MRSA carrier or ß-lactam allergy) up to 24h	Untreated carriers 6/139 (4.3%)	16/800 (2.0%)	3/89 (3.4%)	Untreated carriers 3/139 (2.2%)	9/800 (1.1%)	2/89 (2.2%)	 Overall PJI rate was higher among S aureus carriers than noncarriers—3.9% (9/228) vs 2.0% (16/800), but it did not reach statistical significance Treated and untreated carriers showed no

(continued on next page)

Author	Target	Type of	Treatment	Perioperative	Overall Infectio	n		S aureus In	nfection		Major Finding(s)
	Population	Intervention/ Study	Regimen	Antibiotic Prophylaxis	Control (%)	Noncarriers (%)	Treated Carriers (%)	Control (%)	Noncarriers (%)	Treated Carriers (%)	
Tandon et al	Elective hip or	Soloctivo MBCA	E d Courro of	Several different					81/6520	E /70	significant difference either in <i>S aureus</i> or all pathogens infections
Tandon et al, 2017 [39]	Elective hip or knee arthroplasty	Selective MRSA carrier's treatment Retrospective after intervention	intranasal mupirocin 3 times a day + daily chlorhexidine baths + hair shampoo on days 1 and 3	Several different regimens; teicoplanin alone or with gentamicin in 58% of cases		-		_	81/6530 (1.2%)	5/79 (6.3%)	 Patients with negative rescreening after treatment underwent surgery within 3 mo-mean time interval 2.5 wk Four patients with MRS/ positive rescreens after treatment were excluded The relative risk of deep SSI MRSA carriers was significantly higher despite treatment both in hip (4.46 and knee (5.6) patients PUL foil from 1.02% to 1.43%
Jeans et al, 2018 [40]	Elective hip or knee arthroplasty	Retrospective study Case-control	Daily octenidine wash + intranasal mupirocin 4 times a day 5 d before and after the procedure		69/3593 (1.92%)	131/9318 (1.41%)					 PJI fell from 1.92% to 1.41 with the screening and decolonization protocol (<i>P</i> = .03) The screening program w most effective in MSSA prevention in THA (3% to 1.5%, <i>P</i> = .002)
Pelfort et al, 2019 [41]	Elective primary knee arthroplasty	Retrospective study Case-control	5-d Course of intranasal mupirocin 3 times a day + daily chlorhexidine baths	2 g of cefazolin or 1g vancomycin if MRSA carrier or ß-lactam allergy	17/400 (4.25%)	5/403 (1.24%)		8/400 (2%)	1/403 (0,24%)		 Incidence of 20.6% of <i>S</i> aurenasal carriers, with an incidence of only 1.9% for MRSA. No nasal carrier who w decolonized presented a SS by this microorganism. Reduction in global SSIs 71% and a reduction in specific <i>S</i> aureus SSIs of 88%
Romero- Palacios et al, 2019 [42]	Primary or revision hip or knee arthroplasty	Retrospective before and after intervention	5-d Course of intranasal mupirocin twice daily + chlorhexidine baths	_	42/8505 (0.5%)	7/1883 (0.4%)		29/8505 (0.3%)	1/1883 (0.05%)		 No nasal carrier who w decolonized presented a SS by this microorganism Significant reduction in P due to S aureus by screenir for and decolonizing S aure carriers before total joint arthroplasties No significant difference overall infection rates was observed

NS, not statistically significant; MRSA, methicillin-resistant S aureus; MSSA, methicillin-susceptible S aureus; PJI, periprosthetic joint infection; SSI, surgical site infection; THA, total hip arthroplasty; TKA, total knee arthroplasty.

^a This paper also reported on cardiac surgery and hysterectomy but data presented here concerns joint arthroplasty exclusively.

^b This paper also reported on other elective inpatient orthopedic surgery but data presented here concerns joint arthroplasty exclusively.

^c This paper also reported on cardiac operations but data presented here concerns joint arthroplasty exclusively.

^d This paper also reported on primary spinal fusion but data presented here concerns joint arthroplasty exclusively.

A.I. Ribau et al. / The Journal of Arthroplasty 36 (2021) 752–766

760

Table 3 (continued)

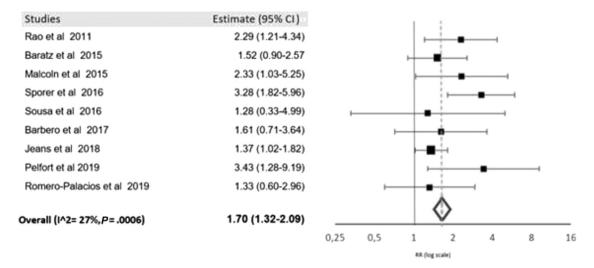


Fig. 7. Forest plots showing the RR of infection control vs nasal and skin decolonization in total joint arthroplasty.

Cost-Effectiveness

One letter to the editor [18] and 7 other papers [16,17,43–47] focused on the cost-effectiveness of preoperative screening and decolonization strategies before elective TJA procedures and are summarized in Table 4.

Slover et al [45] conducted a Markov decision analysis to assess the cost savings associated with preoperative *S aureus* screening and decolonization program on 365 TJAs and 287 spine fusions in the United States, with an assumed 1.5% baseline risk of infection. Data from their own cohort were used to determine the probability of positive MSSA and MRSA cultures and patient compliance with the prescribed mupirocin treatment, along with costs of nasal culture and mupirocin treatment. The authors concluded that a universal *S aureus* screening and decolonization protocol for TJA and spinal fusion needed to produce a modest reduction (35% reduction in the revision rate for TJA and 10% for spine fusion) in the SSI rate would save costs [45].

Courville et al [17] used a simple decision tree model comparing 3 different screening strategies in a hypothetical cohort of TJA patients: (1) nasal screening of all patients and treatment for *S aureus* culture-positive patients (screen-and-treat strategy); (2) preoperative mupirocin treatment for all patients and no screening (treatall strategy); and (3) no screening and no mupirocin treatment (notreatment strategy). The authors found that empirical treatment of all patients without previous screening for nasal *S aureus* carriage was associated with lower costs and greater expected benefit with a high range interval of costs for testing, *S aureus* prevalence, mupirocin treatment, RR of PJI, and costs for primary and septic revision surgeries [17]. However, differences in cost and benefit between the 3 strategies were relatively small.

Meda et al [18] evaluated the cost-effectiveness of MSSA decolonization based on their rates of infection after TJA. Of 5156 TJA patients, there were 29 deep incisional/organ-space infections, excluding those likely to have a hematogenous origin. In 2 of those infections, *S aureus* was the isolated pathogen. Considering only primary and not revision surgery and assuming a 20% colonization rate, the authors determined that MSSA screening and treatment would not be cost-effective in their unit where *S aureus* infection is responsible for less than 5% of all identified PJI [18].

Williams et al [47] evaluated the cost-effectiveness of 3 different screen-and-treat protocols (4 swabs, 2 swabs, and nasal swab alone) and compared them to no-screening and universal decolonization (treat-all) strategies. The prevalence of *S aureus* colonization and sensitivity of swab protocols were derived from institutional data from a retrospective analysis of 1641 patients. Results showed that universal decolonization and the 4-swab strategies provided the largest reduction in PJI [47]. Cost-

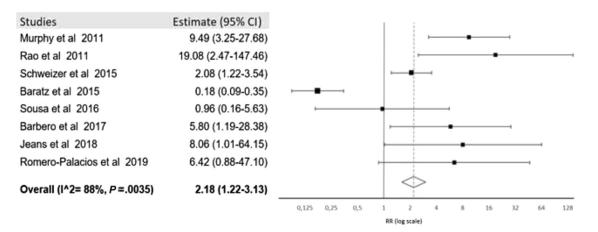


Fig. 8. Forest plots showing the RR of S aureus infection control vs nasal and skin decolonization in total joint arthroplasty.

761

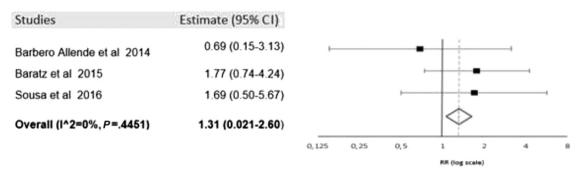


Fig. 9. Forest plots showing the RR of developing any infection after surgery in treated carriers vs noncarriers.

effectiveness was viewed from different perspectives depending on the payer. From the societal perspective, universal decolonization was the most cost-effective at an incremental cost of USD 14,229 per infection prevented. From a hospital-only perspective, the universal decolonization strategy dominated in the base case and across a range of values in sensitivity analyses. From a patient perspective, 2 swabs (nares and pharynx) dominated at an incremental cost of USD 4773 per infection prevented. From the societal perspective, the universal decolonization strategy was the most effective. The authors also found that regardless of the payer perspective considered, as the risk of PJI in an untreated carrier increased, the incremental cost per infection prevented decreased [47].

Stambough et al [46] performed a similar study comparing 1981 patients who underwent a screen-and-treat strategy and 2205 patients who underwent a treat-all strategy. Patients were treated using a combination of nasal mupirocin and chlorhexidine scrubs in both groups. The study found a significant decrease in the 90-day overall and *S aureus* infection rates using the universal decolonization protocol compared with screen-and-treat strategy, and a cost analysis accounting for the cost to administer the universal regimen demonstrated an actual savings in excess of USD 700,000 [46].

In a break-even analysis, Kerbel et al [44] reported on different absolute risk reduction (ARR, ie, difference between the before and after intervention infection rates) that would be necessary to make different screening/treatment strategies cost-effective. Naturally, screening and selective treatment require much higher ARR reductions (0.56% for total knee arthroplasty and 0.45% for total hip arthroplasty) than universal treatment strategies. The latter required a minimum of 0.02% ARR and a maximum of 0.15% ARR, depending on the cost of the universal treatment adopted [44]. Hadi et al [43] reported on the prevalence of *S aureus* and MRSA colonization on their TJA cohort and determined that if screening and treatment would reduce 1 infection in 100 patients (1% ARR), it would lead to 80% reduction in costs.

Recently, Rennert-May et al [16] performed a Markov model to assess the efficiency of implementing a decolonization protocol before TJA in Alberta (Canada) using mupirocin ointment and chlorhexidine sponges. The effectiveness of such a protocol at reducing *S aureus* complex SSI was derived from a preintervention and postintervention trial [36]. They figured such a protocol would save USD 161 per person, which in Alberta would translate into savings of USD 1.26 million annually.

Discussion

It has been shown that a significant proportion of patients carry *S aureus* in their commensal flora and they seem to be at increased risk of infection in multiple clinical settings [48,49]. This has driven many centers to adopt screening/decolonization before elective medical procedures including surgery [33]. Results in orthopedic surgery are encouraging but high-level evidence regarding TJA specifically is still scarce. A different aspect deserving our attention is the cost-effectiveness of the different screening/decolonization strategies that have been described. Thus, the purposes of this study were to (1) determine whether preoperative *S aureus* screening and/or decolonization is effective at reducing SSI in orthopedic surgery; (2) determine whether preoperative *S aureus* screening and/or decolonization is effective at reducing PJI in patients undergoing elective TJA; and (3) evaluate which preoperative

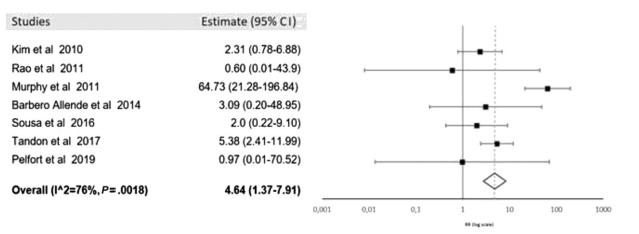


Fig. 10. Forest plots showing the RR of developing S aureus infection after surgery in treated carriers compared to noncarriers.

Downloaded for Anonymous User (n/a) at University of Vermont from ClinicalKey.com by Elsevier on March 14, 2021. For personal use only. No other uses without permission. Copyright ©2021. Elsevier Inc. All rights reserved.

Table 4

Cost-Effectiveness Studies of *Staphylococcus aureus* Screening in Total Joint Arthroplasty Patients.

Author	Year	Country	Methodology	Overall <i>S aureus</i> (MRSA) Carriage Rate Real or Presumed	Overall PJI (S aureus) Rate Real or Presumed	Reduction/Impact on PJI Rate Real or Presumed	Major Finding(s)
Slover et al [45]	2011	USA	Markov decision analysis	23.3% (MRSA 3.3%)	1.5%	10% Reduction on revision rate	Combined with an average cost of septic revisions greater than USD 70,000 would make the screen- and-treat protocol cost saving for the institution
Courville et al [17]	2012	USA	Decision models based	26% (MRSA 2%)	1.3% for mupirocin- treated carriers 0.58% for untreated noncarriers	0.61 relative risk among mupirocin-treated (vs untreated carriers)	Both the treat-all strategy and the screen-and-treat strategy are cost- effective alternatives compared with no decolonization Treat-all strategy was associated with lower costs and greater expected benefit
Meda at al [18].	2016	UK	Retrospective	20%	0.56% (S aureus 0.02%)	-	Hypothetical implementation of a screen-and-treat protocol was considered not to be cost-effective (extremely low <i>S aureus</i> infection rate)
Williams et al [47]	2017	USA	Decision analytic model	33.5%	3.3% for untreated carriers 1.3% for treated carriers 0.58% for untreated noncarriers	45% decrease (treat-all) 45% decrease (4-swab screen) 41% decrease (2-swab screen) 38% decrease (1-swab screen)	Treat-all decolonization is most cost-effective from a societal perspective across a broad range of rates of PJI risk and decolonization efficacy
Stambough et al [46]	2017	USA	Retrospective	20%	0.76% (MRSA 0.30%)	0.76% (screen-and- treat) to 0.23% (treat- all)	Treat-all decolonization demonstrates significant decrease in both the overall SSI and <i>S aureus</i> infection rate compared to a screen- and-treat historic control Universal decolonization saved USD 717,205.59 (2205 vs 1981 TJA)
Kerbel et al [44]	2018	USA	Break-even analysis	_	1.10% for TKA 1.63% for THA	0.56% ARR for TKA and 0.45% for THA 0.02% ARR for both TKA and THA 0.15% ARR for TKA and 0.12% for THA	S aureus nasal screen-and-treat Most inexpensive treat-all protocol (ie, mupirocin ointment) Most expensive treat-all protocol (ie, mupirocin + chlorhexidine wipes, chlorhexidine shower + prophylactic vancomycin)
Hadi et al [43]	2018	Iran	Prospective cross-sectional	20.8% (MRSA 1.8%)	2%-7%	1% ARR	Screen-and-treat decolonization program leads to 80% reduction in costs
Rennert-May et al [16]	2019	Canada	Markov model	_	1.04% (S aureus 0.4%)	50% reduction in PJI rate	USD 153 savings per person with a screen-and-treat decolonization program

MRSA, methicillin-resistant *S aureus*; PJI, periprosthetic joint infection; SSI, surgical site infection; TJA, total joint arthroplasty; TKA, total knee arthroplasty; THA, total hip arthroplasty; ARR, absolute risk reduction (ie, difference between the initial and final infection rates).

S aureus screening/treatment strategy is most cost-effective for reducing PJI in patients undergoing TJA.

Earlier decolonization protocols focused solely on nasal decontamination using mupirocin ointment. Retrospective studies comparing before and after universal treatment protocols for overall orthopedic surgery found encouraging significant improvements in infection rates [26,29]. Prospective studies however, including 1 randomized controlled trial, were not able to show a similar statistically significant advantage [5,27]. If one analyzes evidence of nares decolonization specifically on TJA patients, no studies were able to show true effectiveness [30,31]. The results of the present meta-analysis showed that nares decolonization only marginally offered some advantage considering infections in all orthopedic surgical cases, but the same trend did not hold in *S aureus* infections alone or in elective TJA.

Recognizing the relevance of other body site colonization, preoperative treatment protocols have evolved to include not only nares but also whole-body decontamination mostly by using daily chlorhexidine baths 5 days before surgery. Most papers in this category have adopted the screening and selective carrier's treatment approach and the overwhelming majority of data come from before-and-after intervention studies. Results of this meta-analysis showed that the current methodology of nares and whole-body decolonization seems to be effective for reducing the overall risk of *S aureus* infections in orthopedic surgical cases, and a similar conclusion was found when pooling results for elective TJA.

It is nevertheless important to recognize that results also suggest decolonization is not fully protective. The RR of *S aureus* infection after surgery is still 4.64 times higher than that of noncolonized patients. This finding is in line with the results of a small underpowered but unique prospective randomized controlled trial focusing exclusively on TJA. Sousa et al [6] reported on 1028 elective TJA with 228 identified carriers that were randomized to preoperative treatment. Treated and untreated carriers showed no significant differences in overall or *S aureus* PJI, but PJI among carriers considered together was higher than among noncarriers [6]. Multiple studies have demonstrated that *S aureus* carriers are at increased risk of infection in a variety of clinical scenarios, including TJA. Whether this increased risk is exclusively due to the carrier state is not entirely clear, as some known medical factors that increase the risk of being *S aureus* carriers are also known independent risk factors for PJI, including diabetes, obesity, renal insufficiency, inflammatory arthritis, or immunosuppression [6,50,51]. In fact, Maoz et al [52] also found *S aureus* colonization was associated with a higher infection rate in 3672 primary and 406 revision hip arthroplasties, but it was not demonstrated to be an independent risk factor in a multivariate analysis.

Despite its apparent merit, implementing an effective screening and targeted decolonization strategy in daily practice is laborious and complex in present-day practice, raising questions about its cost-effectiveness. Several different methods for assessing costeffectiveness were used in literature, making it impossible to perform a meta-analysis. Based on the results of our systematic review, it seems that adopting a universal decolonization rather than a screen-and-treat protocol was the most cost-effective approach and also the most effective in decreasing PJI in a wide range of S aureus carriage prevalence, costs of screening and treatment, PJI rate, and socioeconomic costs of dealing with infection. It is also easier and less resource-consuming to implement and more importantly, no carrier would be left untreated due to screening sensitivity issues or timely identification. However, the treat-all approach is associated with theoretical costs that are not considered in the economic models, such as risks of emerging resistance to topical antibiotics like mupirocin [53]. An alternative approach to obviate this problem would be to use antiseptics, such as octenidine or povidone-iodine, rather than antibiotics to achieve *S* aureus decolonization [54–56]. Despite this, 1-swab or 2-swab screen-and-treat strategies still offer cost-effective results. Ultimately, choosing the most appropriate strategy may depend on the baseline PJI risk in each institution and patient subpopulations. In this regard, it is important to stress that although specific medical and demographic risk factors for S aureus and MRSA colonization among TIA candidates can be found, there is a significant proportion of carriers with no known risk factor(s) and therefore selective screening of high-risk population subgroups is not an effective approach to accurately identify carriers [34,50,51,57,58].

Other meta-analyses have already been performed on this topic. Past meta-analyses have focused on overall orthopedic surgery [59] or even orthopedic and cardiac surgery [60]. More recently, Sadigursky et al [61] and Zhu et al [62] specifically examined the TJA population and Ning et al [63] performed a similar study focusing on spinal surgery. During the Second International Consensus Meeting on Musculoskeletal Infection held in Philadelphia in 2018, a recommendation was also issued on this topic [64]. The current paper represents an update and attempts to overcome a couple of limitations identified in the aforementioned recommendation. We were able to include a larger number of studies with several thousand patients and did not limit our report to overall orthopedic surgical cases but also included subgroup analysis on elective TJA cases. Additionally, we also performed a meta-analysis of the extracted data to grasp a better perception of its real impact. We also combined a systematic review investigating the costeffectiveness of different strategies.

Despite these strengths, there were weaknesses associated with this study. As with all other meta-analyses, the results were only as reliable as the quality of the papers included. Although the heterogeneity among different study results was low for most major findings, only 5 of the studies included were prospective [5,6,27,31,33]. The overwhelming majority of papers included in

this study came from before-and-after intervention studies with historic control groups. In itself this study design increases the possibility of certain bias such as changes in perioperative antibiotic prophylaxis regimen, surgical duration or surgical technique changes such as irrigation before closure or even postoperative protocols such as dressing, decreased blood transfusion policy with or without the use of tranexamic acid, etc. that may not be specifically mentioned. There were also significant differences among screening methodologies, including some papers that exclusively screened MRSA carriers [32,34,39], with inherent differences in their ability to identify and subsequently treat all potential S aureus carriers. In some studies, the perioperative antibiotic prophylaxis in MRSA carriers was changed [1,3,4,6,20,33,34,36–38,41], which may or may not influence the outcomes of these specific subgroup of patients [65,66]. Due to the different strategies involved in the studies, we were unable to conduct a meta-analysis comparing noncarriers to treated carriers and to nontreated carriers in the TJA group. Our analysis, as the studies included, did not take into account patient characteristics, such as age and comorbidities, and intervention specificities, such as the duration of surgery that can influence SSI and PJI rates. Thus, the authors believe that more prospective studies with standardized methodologies and including other types of data may provide higher levels of evidence for this topic of study.

Conclusion

Nasal colonization of S aureus at the time of surgery is a risk factor for SSI/PJI in orthopedic and elective TJA surgery. This systematic review and meta-analysis determined that the implementation of a traditional S aureus screening and whole-body decolonization protocol using mupirocin and chlorhexidine can reduce infection after TJA. However, this finding is mostly based upon retrospective studies, so larger-scale prospective multicenter studies are needed to further scrutinize its real value. The actual impact of such intervention may in part depend on the preponderance of the endogenous contamination route over the traditional exogenous mode of acquiring infection in each specific epidemiological setting. The concept of genetic predisposition for endogenous routes such as the microbiome concept is emerging with experimental data suggesting the gut microbiota may influence susceptibility to PII [67]. Further studies are also needed to determine clinically effective methodologies potentially using antiseptics to reduce S aureus colonization to obviate antibiotic resistance associated with implementing the most cost-effective universal treatment strategy.

References

- Baratz MD, Hallmark R, Odum SM, Springer BD. Twenty percent of patients may remain colonized with methicillin-resistant Staphylococcus aureus despite a decolonization protocol in patients undergoing elective total joint arthroplasty. Clin Orthop Relat Res 2015;473:2283–90.
- [2] Barbero JM, J.R., Valles A, Plasencia MA, Montero E, Lopez J. [Decolonization for Staphylococcus aureus carriers in arthroplasty surgery after hip fracture]. Rev Esp Quimioter 2017;30:264–8.
- [3] Kim DH, Spencer M, Davidson SM, Li L, Shaw JD, Gulczynski D, et al. Institutional prescreening for detection and eradication of methicillin-resistant Staphylococcus aureus in patients undergoing elective orthopaedic surgery. J Bone Joint Surg Am 2010;92:1820–6.
- [4] Malcolm TL, Robinson le D, Klika AK, Ramanathan D, Higuera CA, Murray TA-O. Predictors of Staphylococcus aureus colonization and results after decolonization. Interdiscip Perspect Infect Dis 2016;2016:4367156.
- [5] Price CS, Williams A, Philips G, Dayton M, Smith W, Morgan S. Staphylococcus aureus nasal colonization in preoperative orthopaedic outpatients. Clin Orthop Relat Res 2008;466:2842–7.
- [6] Sousa R, Barreira P, Leite P, Santos AC, Ramos MH, Oliveira A. Preoperative Staphylococcus aureus screening/decolonization protocol before total joint arthroplasty-results of a small prospective randomized trial. J Arthroplasty 2016;31:234–9.

- [7] Lucet JC, Regnier B. Screening and decolonization: does methicillin-susceptible Staphylococcus aureus hold lessons for methicillin-resistant S. aureus? Clin Infect Dis 2010;51:585–90.
- [8] Yano K, Minoda Y, Sakawa A, Kuwano Y, Kondo K, Fukushima W, et al. Positive nasal culture of methicillin-resistant Staphylococcus aureus (MRSA) is a risk factor for surgical site infection in orthopedics. Acta Orthop 2009;80:486–90.
- [9] Kalmeijer MD, van Nieuwland-Bollen E, Bogaers-Hofman D, de Baere GA. Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery. Infect Control Hosp Epidemiol 2000;21: 319–23.
- [10] Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JavK, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 2004;364:703–5.
- [11] Zacharioudakis IM, Zervou FN, Ziakas PD, Mylonakis E. Meta-analysis of methicillin-resistant Staphylococcus aureus colonization and risk of infection in dialysis patients. J Am Soc Nephrol 2014;25:2131–41.
- [12] Munoz P, Hortal J, Giannella M, Barrio JM, Rodriguez-Creixems M, Perez MJ, et al. Nasal carriage of S. aureus increases the risk of surgical site infection after major heart surgery. J Hosp Infect 2008;68:25–31.
- [13] Skramm I, Fossum Moen AE, Aroen A, Bukholm G. Surgical site infections in orthopaedic surgery demonstrate clones similar to those in orthopaedic Staphylococcus aureus nasal carriers. J Bone Joint Surg Am 2014;96:882–8.
- [14] Berthelot P, Grattard F, Cazorla C, Passot JP, Fayard JP, Meley R, et al. Is nasal carriage of Staphylococcus aureus the main acquisition pathway for surgicalsite infection in orthopaedic surgery? Eur J Clin Microbiol Infect Dis 2010;29: 373–82.
- [15] Alamanda VK, Springer BD. Perioperative and modifiable risk factors for periprosthetic joint infections (PJI) and recommended guidelines. Curr Rev Musculoskelet Med 2018;11:325–31.
- [16] Rennert-May E, Conly J, Smith S, Puloski S, Henderson E, Au F, et al. A costeffectiveness analysis of mupirocin and chlorhexidine gluconate for Staphylococcus aureus decolonization prior to hip and knee arthroplasty in Alberta, Canada compared to standard of care. Antimicrob Resist Infect Control 2019;8:113.
- [17] Courville XF, Tomek IMK, Kathryn B, Birhle M, Kantor SR, Finlayson SRG. Costeffectiveness of preoperative nasal mupirocin treatment in preventing surgical site infection in patients undergoing total hip and knee arthroplasty: a cost-effectiveness analysis. Infect Control Hosp Epidemiol 2012;33:152.
- [18] Meda M, Gentry V, Perry A, Sturridge S. Is preoperative screening for methicillin-susceptible Staphylococcus aureus in joint replacement surgery costeffective to reduce surgical site infections? J Hosp Infect 2016;94:305–6.
- [19] Rao N, Cannella B, Crossett LS, Yates Jr AJ, McGough 3rd R. A preoperative decolonization protocol for staphylococcus aureus prevents orthopaedic infections. Clin Orthop Relat Res 2008;466:1343–8.
- [20] Rao N, Cannella BA, Crossett LS, Yates Jr AJ, McGough 3rd RL, Hamilton CW. Preoperative screening/decolonization for Staphylococcus aureus to prevent orthopedic surgical site infection: prospective cohort study with 2-year follow-up. J Arthroplasty 2011;26:1501–7.
- [21] Hofmann K, Hayden B, Kong Q, Pevear M, Cassidy C, Smith E. Triple prophylaxis for the prevention of surgical site infections in total joint arthroplasty. Curr Orthopaedic Pract 2016;28:1554.
- [22] Sankar B, Hopgood P, Bell KM. The role of MRSA screening in joint-replacement surgery. Int Orthop 2005;29:160–3.
- [23] Rieser GR, Moskal JT. Cost efficacy of methicillin-resistant Staphylococcus aureus decolonization with intranasal povidone-iodine. J Arthroplasty 2018;33:1652–5.
- [24] Torres EG, Lindmair-Snell JM, Langan JW, Burnikel BG. Is preoperative nasal povidone-iodine as efficient and cost-effective as standard methicillin-resistant Staphylococcus aureus screening protocol in total joint arthroplasty? J Arthroplasty 2016;31:215–8.
- [25] Hamza TH, van Houwelingen HC, Stijnen T. The binomial distribution of metaanalysis was preferred to model within-study variability. J Clin Epidemiol 2008;61:41–51.
- [26] Gernaat-van der Sluis AJ, Hoogenboom-Verdegaal AM, Edixhoven PJ, Spiesvan Rooijen NH. Prophylactic mupirocin could reduce orthopedic wound infections. 1,044 patients treated with mupirocin compared with 1,260 historical controls. Acta Orthop Scand 1998;69:412–4.
- [27] Kalmeijer MD, Coertjens H, van Nieuwland-Bollen PM, Bogaers-Hofman D, de Baere GAJ, Stuurman A, et al. Surgical site infections in orthopedic surgery: the effect of mupirocin nasal ointment in a double-blind, randomized, placebocontrolled study. Clin Infect Dis 2002;35:353–8.
- [28] Wilcox MH, Hall J, Pike H, Templeton PA, Fawley WN, Parnell P, et al. Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J Hosp Infect 2003;54: 196–201.
- [29] Coskun D, Aytac J. Decrease in Staphylococcus aureus surgical-site infection rates after orthopaedic surgery after intranasal mupirocin ointment. J Hosp Infect 2004;58:90–1.
- [30] Hacek DM, Robb WJ, Paule SM, Kudrna JC, Stamos VP, Peterson LR. Staphylococcus aureus nasal decolonization in joint replacement surgery reduces infection. Clin Orthop Relat Res 2008;466:1349–55.
- [31] Hadley S, Immerman I, Hutzler L, Slover J, Bosco J. Staphylococcus aureus decolonization protocol decreases surgical site infections for total joint replacement. Arthritis 2010;2010:924518.

- [32] Pofahl WE, Goettler CE, Ramsey KM, Cochran MK, Nobles DL, Rotondo MF. Active surveillance screening of MRSA and eradication of the carrier state decreases surgical-site infections caused by MRSA. J Am Coll Surg 2009;208: 981–6.
- [33] Bode LG, Kluytmans JA, Wertheim HFL, Bogaers D, Vandenbroucke-Grauls CMJE, Roosendaal R, et al. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med 2010;362:9–17.
- [34] Murphy E, Spencer SJ, Young D, Jones B, Blyth MJG. MRSA colonisation and subsequent risk of infection despite effective eradication in orthopaedic elective surgery. J Bone Joint Surg Br 2011;93:548–51.
- [35] Barbero Allende JM, Romanyk Cabrera J, Montero Ruiz E, Valles Purroy A, Melgar Molero V, Agudo Lopez R, et al. [Eradication of Staphylococcus aureus in carrier patients undergoing joint arthroplasty]. Enferm Infecc Microbiol Clin 2015;33:95–100.
- [36] Schweizer ML, Chiang HY, Septimus E, Moody J, Braun B, Hafner J, et al. Association of a bundled intervention with surgical site infections among patients undergoing cardiac, hip, or knee surgery. JAMA 2015;313:2162–71.
- [37] Ramos N, Stachel A, Phillips M, Vigdorchik J, Bosco JA. Prior Staphylococcus aureus nasal colonization: a risk factor for surgical site infections following decolonization. J Am Acad Orthop Surg 2016;24:880–5.
- [38] Sporer SM, Rogers T, Abella L. Methicillin-resistant and methicillin-sensitive Staphylococcus aureus screening and decolonization to reduce surgical site infection in elective total joint arthroplasty. J Arthroplasty 2016;31(9 Suppl): 144–7.
- [39] Tandon T, Tadros BJ, Akehurst H, Avasthi A, Hill R, Rao M. Risk of surgical site infection in elective hip and knee replacements after confirmed eradication of MRSA in chronic carriers. J Arthroplasty 2017;32:3711–7.
- [40] Jeans E, Holleyman R, Tate D, Reed M, Malviya A. Methicillin sensitive staphylococcus aureus screening and decolonisation in elective hip and knee arthroplasty. J Infect 2018;77:405–9.
- [41] Pelfort X, Romero A, Brugues M, Garcia A, Gil S, Marron A. Reduction of periprosthetic Staphylococcus aureus infection by preoperative screening and decolonization of nasal carriers undergoing total knee arthroplasty. Acta Orthop Traumatol Turc 2019;53:426–31.
- [42] Romero-Palacios A, Petruccelli D, Main C, Winemaker M, de Beer J, Mertz D. Screening for and decolonization of Staphylococcus aureus carriers before total joint replacement is associated with lower S aureus prosthetic joint infection rates. Am J Infect Control 2020;48:534.
- [43] Hadi H, Jabalameli M, Bagherifard A, Ghaznavi-Rad E, Behrouzi A, Joorabchi A, et al. Staphylococcus aureus colonization in patients undergoing total hip or knee arthroplasty and cost-effectiveness of decolonization programme. Arch Bone Jt Surg 2018;6:554–9.
- [44] Kerbel YE, Sunkerneni AR, Kirchner GJ, Prodromo JP, Moretti VM. The costeffectiveness of preoperative Staphylococcus aureus screening and decolonization in total joint arthroplasty. J Arthroplasty 2018;33:S191–5.
- [45] Slover J, Haas JP, Quirno M, Phillips MS, Bosco 3rd JA. Cost-effectiveness of a Staphylococcus aureus screening and decolonization program for high-risk orthopedic patients. J Arthroplasty 2011;26:360–5.
- [46] Stambough JB, Nam D, Warren DK, Keeney JA, Clohisy JC, Barrack RL, et al. Decreased hospital costs and surgical site infection incidence with a universal decolonization protocol in primary total joint arthroplasty. J Arthroplasty 2017;32:728–34.
- [47] Williams DM, Miller AO, Henry MW, Westrich GH, Ghomrawi HMK. Costeffectiveness of Staphylococcus aureus decolonization strategies in high-risk total joint arthroplasty patients. J Arthroplasty 2017;32:S91–6.
- [48] Nouwen J, Schouten J, Schneebergen P, Snijders S, Maaskant J, Koolen M, et al. Staphylococcus aureus carriage patterns and the risk of infections associated with continuous peritoneal dialysis. J Clin Microbiol 2006;44:2233–6.
- [49] Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997;10:505–20.
- [50] Campbell KAC, Colleen HS, Hutzler L, Bosco 3rd JA. Risk factors for developing Staphylococcus aureus nasal colonization in spine and arthroplasty surgery. Bull Hosp Jt Dis (2013) 2015;73:276–81.
- [51] Walsh AL, Fields AC, Dieterich JD, Chen DD, Bronson MJ, Moucha CS. Risk factors for Staphylococcus aureus nasal colonization in joint arthroplasty patients. J Arthroplasty 2018;33:1530. https://doi.org/10.1016/ j.arth.2017.12.038.
- [52] Maoz G, Phillips M, Bosco J, Slover J, Stachel A, Inneh I, et al. The Otto Aufranc Award: modifiable versus nonmodifiable risk factors for infection after hip arthroplasty. Clin Orthop Relat Res 2015;473:453–9.
- [53] Hetem DJ, Bootsma MC, Bonten MJ. Prevention of surgical site infections: decontamination with mupirocin based on preoperative screening for Staphylococcus aureus carriers or universal decontamination? Clin Infect Dis 2016;62:631–6.
- [54] Koburger T, Hubner NO, Braun M, Siebert J, Kramer A. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 2010;65:1712-9.
- [55] Rezapoor M, Nicholson T, Tabatabaee RM, Chen AF, Maltenfort MG, Parvizi J. Povidone-iodine-based solutions for decolonization of nasal Staphylococcus aureus: a randomized, prospective, placebo-controlled study. J Arthroplasty 2017;32:2815–9.
- [56] Anderson MJ, David ML, Scholz M, Bull SJ, Morse D, Hulse-Stevens M, et al. Efficacy of skin and nasal povidone-iodine preparation against mupirocin-

resistant methicillin-resistant Staphylococcus aureus and S. aureus within the anterior nares. Antimicrob Agents Chemother 2015;59:2765–73.

- [57] de Wouters SD, Jeremy, Kaminski L, Thienpont E, Cornu O, Yombi JC. Selective Methicillin-Resistant Staphylococcus Aureus (MRSA) screening of a high risk population does not adequately detect MRSA carriers within a country with low MRSA prevalence. Acta Orthop Belg 2015;81:620–8.
 [58] Schmidt HM, Izon C, Maley MW. Demographic screening for MRSA may
- [58] Schmidt HM, Izon C, Maley MW. Demographic screening for MRSA may compromise the effectiveness of ring fencing on a joint replacement unit. J Hosp Infect 2012;82:207–9.
- [59] Chen AF, Wessel CB, Rao N. Staphylococcus aureus screening and decolonization in orthopaedic surgery and reduction of surgical site infections. Clin orthopaedics Relat Res 2013;471:2383–99.
- [60] Schweizer M, Perencevich E, McDanel J, Carson J, Formanek M, Hafner J, et al. Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: systematic review and meta-analysis. BMJ 2013;346:f2743.
- [61] Sadigursky D, Pires HS, Rios SAC, Rodrigues Filho FLB, Queiroz GC, Azi ML. Prophylaxis with nasal decolonization in patients submitted to total knee and hip arthroplasty: systematic review and meta-analysis. Rev Bras Ortop 2017;52: 631–7.

- [62] Zhu X, Sun X, Zeng Y, Feng W, Li J, Zeng J, et al. Can nasal Staphylococcus aureus screening and decolonization prior to elective total joint arthroplasty reduce surgical site and prosthesis-related infections? A systematic review and meta-analysis. J Orthop Surg Res 2020;15:60.
- [63] Ning J, Wang J, Zhang S, Sha X. Nasal colonization of Staphylococcus aureus and the risk of surgical site infection after spine surgery: a meta-analysis. Spine J 2020;20:448–56.
- [64] Akesson PC, Antonia F, Deirmengian GK, Geary M, Quevedo MS, Sousa R, et al. General assembly, prevention, risk mitigation, local factors: proceedings of international consensus on orthopedic infections. J Arthroplasty 2019;34:S49–53.
- [65] Burger JR, Hansen BJ, Leary EV, Aggarwal A, Keeney JA. Dual-agent antibiotic prophylaxis using a single preoperative vancomycin dose effectively reduces prosthetic joint infection rates with minimal renal toxicity risk. J Arthroplasty 2018;33:S213–8.
- [66] Sewick A, Makani A, Wu C, O'Donnell J, Baldwin KD, Lee G-C. Does dual antibiotic prophylaxis better prevent surgical site infections in total joint arthroplasty? Clin Orthop Relat Res 2012;470:2702–7.
- [67] Hernandez CJ, Yang X, Ji G, Niu Y, Sethuraman AS, Koressel J, et al. Disruption of the gut microbiome increases the risk of periprosthetic joint infection in Mice. Clin Orthopaedics Relat Res 2019;477:2588–98.

766

Appendix

Table A.1

Staphylococcus aureus Screening and Nasal Decolonization Only Results in Reducing SSI in All Orthopedic Procedures.

Author	Target	Type of	Treatment Regimen		Overall Infec	tion		S aureus Infection			Major Finding(s)
	Population	Intervention/ Study		Antibiotic Prophylaxis	Control	Intervention	P Value	Control	Intervention	P Value	
Prospective studies Kalmeijer et al, 2002 [27]	Elective orthopedic surgery with implants (ie, hip, knee, or back)	Universal treatment Randomized, placebo- controlled trial	Topical intranasal mupirocin ≥2 doses before surgery	Cefamandole 2 g within 1 h before and 8 and 16 h after surgery	Historic 14/299 (4.7%)	12/315 (3.8%)	NS	Historic 8/299 (2.7%)	5/315 (1.6%)	NS	 Relative risk ratio of overall or <i>S aureus</i> infections was not significantly reduced Endogenous <i>S aureus</i> infections were 5 times less likely to occur in the mupirocin group but difference was not statistically significant
Price et al, 2008 [5]	Elective orthopedic surgery	Selective carrier's treatment by choice Cross-sectional analysis	Topical intranasal mupirocin ≥6 doses before surgery	Cefazolin (or clindamycin if cephalosporin allergy)	_	_	_	Noncarriers 2/196 (1.0%) Untreated carriers 2/43 (4.7%)	Treated carriers 0/43 (0.0%)	NS	 No statistically significant SSI rate between groups SSI resulting from <i>S</i> <i>aureus</i> was significantly higher among arthroplasty surgery (<i>P</i> = .02) Both infections in the untreated carriers group were MSSA phenotypically similar to the nares isolate
Hadley et al, 2010 [31]	Primary total knee or hip arthroplasty	Universal treatment Prospective cohort	5-d Course of intranasal mupirocin regardless of screening result	Cefazolin or clindamycin if ß-lactam allergy (or vancomycin if MRSA carrier)	Unscreened 6/414 (1.45%)	21/1644 (1.28%)	.809	MRSA 1/414 (0.24%)	MRSA 3/1644 (0.18%)	NS	 Staphylococci decolonization led to a 13% decrease in deep SSI which did not reach statistical significance
Retrospective studie: Gernaat-van der Sluis et al, 1998 [26]	s Arthroplasties, endoprosthetic surgery, and internal fixation	Universal treatment Retrospective before and after intervention	Topical intranasal mupirocin 3 times before surgery	Cefazolin 1g within 1 h before and 4 h after surgery	Historic 34/1260 (2.7%)	14/1044 (1.3%)	.02	Historic 14/1260 (1.1%)	7/1044 (0.7%)	NS	 Relative risk ratio of overall infection significantly decreased by 50% after intervention S aureus infections were also reduced but not ctaticially simileant
Wilcox et al, 2003 [28]	Orthopedic surgery with insertion of metal prosthesis and/ or fixation	Universal treatment Retrospective before and after intervention	Topical intranasal mupirocin 5 d (ie, from day –1 to day +4)	Three doses of Cefadrine 1 g	_	_	_	MRSA ^a 23/1000	MRSA ^a 3.3-4.0/1000	<.001	 statistically significant The incidence of MRSA infections was significantly reduced but not SSI caused by other pathogens (including MSSA) Of 11 MRSA SSI cases occurring in the

A.I. Ribau et al. / The Journal of Arthroplasty 36 (2021) 752-766

(continued on next page)

Author	Target	Type of	Treatment Regimen	Perioperative	Overall Infec	tion		S aureus Infectio	n		Major Finding(s)
	Population	Intervention/ Study		Antibiotic Prophylaxis	Control	Intervention	P Value	Control	Intervention	P Value	
											intervention period, on 1 actually received treatment - Prevalence of MR carriage in the orthopedic wards decreased regularly aft intervention
Coskun and Aytac, 2004 [29]	Orthopedic operations not otherwise specified	Universal treatment Retrospective after intervention	Topical intranasal mupirocin 3 times daily 3 d before surgery	Cefazolin or cefuroxime	Historic 28/920 (3.0%)	32/2329 (1.4%)	<.001	Historic 14/920 (1.5%)	32/2329 (0.4%)	<.001	 There was a significat decrease in overall, <i>S</i> aureus, and MRSA SSI rates MRSA decreased from 1 920 (1.1%) to 3/2329 (0.1%)
Hacek et al, 2008 [30]	Elective hip/ knee joint arthroplasty	Selective carrier's treatment Retrospective before and after intervention	5-d Course of intranasal mupirocin twice a day	Cefazolin for hip/ vancomycin for knee up to 24 h	Unscreened 14/583 (2.4%)	Noncarriers 7/689 (1.0%) Treated carriers 4/223 (1.8%)	≤.05	Unscreened 10/583 (1.7%)	Noncarriers 4/689 (0.6%) Treated carriers 3/223 (1.3%)	≤0.1	 S aureus SSI rate in t intervention group was reduced compared to control group – 0.8% (7 912) vs 1.7% (10/583), b it did not reach statistic significance Assuming a simil proportion of carriers and SSI rate among noncarriers, authors calculate about 8 SSI cases were prevented b the intervention

NS, not statistically significant; MRSA, methicillin-resistant S aureus; MSSA, methicillin-susceptible S aureus; SSI, surgical site infection.

^a Incidence of MRSA infections per 1000 operations.

Table A.1 (continued)

766.e2

Downloaded for Anonymous User (n/a) at University of Vermont from ClinicalKey.com by Elsevier on March 14, 2021. For personal use only. No other uses without permission. Copyright ©2021. Elsevier Inc. All rights reserved.

Staphylococcus aureus Screening With Concomitant Nasal and Skin Decolonization Results.

Author	Target	Type of	Treatment Regimen		Overall Infec	tion		S aureus Infe	ection		Major Finding(s)
	Population	Intervention/ Study		Antibiotic Prophylaxis	Control (%)	Noncarriers (%)	Treated Carriers (%)	Control (%)	Noncarriers (%)	Treated Carriers (%)	
Pofahl et al, 2009 [32]	Elective hip/ knee joint arthroplasty ^a	Selective MRSA carrier's treatment Retrospective before and after intervention	Intranasal mupirocin twice daily 5 d before surgery + chlorhexidine baths on days 1,3, and 5	Prophylaxis changes in MRSA carriers at surgeon discretion	_	_		6/1979 (0.3%)	0/1436 (0.0%)		 Reduction in MRSA SSI was most pronounced in orthopedic (hip and knee prostheses) where it reached statistical significance The rate in MSSA SSI did not change significantly in any group
Kim et al, 2010 [3]	Elective inpatient orthopedic surgery (arthroplasty, spine, sports medicine)	Selective carrier's treatment Retrospective before and after	Intranasal mupirocin twice a day + daily chlorhexidine baths initiated 5 d before surgery	Cefazolin (vancomycin if MRSA carrier)	_	_	_	24/5293 (0.45%)	7/5122 (0.14%)	MRSA 3/309 (0.97%) MSSA 3/1588 (0.19%)	 The rate of SSI during the intervention period was significantly lower than observed during the historic control period—0.19% (13/7019) vs 0.454% (24/5293) The risk reduction was greater for MRSA SSI (0.06% vs 0.19%) than for MSSA SSI (0.13% vs 0.26%) SSI rate among MRSA carriers (0.97%) but not MSSA carriers (0.97%) was significantly higher than that of noncarriers (0.14%)
Bode at al [33]	Orthopedic surgery ^b	Selective carrier's treatment Multicenter randomized placebo- controlled trial	5-d Course of intranasal mupirocin twice a day + daily chlorhexidine baths starting at the time of admission	Not specified				4/87° (4.6%)		1/85 (1.2%)	 Considering all surgical patients, <i>S aureus</i> deep SSI rate was significantly lower among mupirocin-chlorhexidine vs placebo—0.9% (4/504) vs 4.4% (16/413) Among orthopedic surgery patients, mupirocin-chlorhexidine-treated patients vs placebo presented lower <i>S aureus</i> SSI rate but it did not reach statistical significance SSI rate due to microorganisms other than <i>S aureus</i> was not significantly lower in mupirocin-chlorhexidine-treated patients—11% vs 12%
Rao et al, 2011 [20]	Elective total joint arthroplasty	Selective carrier's treatment Retrospective before and after intervention	Intranasal mupirocin twice a day + daily chlorhexidine baths 5 d before surgery	Cefazolin (vancomycin if MRSA carrier or ß-lactam allergy) up to 24 h	Historic 20/741 (2.7%)	17/1440 (1.2%)		Historic 11/741 (1.5%) Concurrent 19/2284 (0.8%)	1/964 (0.1%)	0/321 (0.0%)	 This paper has 2 control groups: historic before intervention of the same surgeons and concurrent in the same time period of a different group of surgeons Overall infection rate (including superficial and deep infection and nonstaphylococcal infections) decreased significantly during the intervention period

Author	Target	Type of	Treatment Regimen	•	Overall Infecti	on		S aureus Infe	ection		Major Finding(s)
	Population	Intervention/ Study		Antibiotic Prophylaxis	Control (%)	Noncarriers (%)	Treated Carriers (%)	Control (%)	Noncarriers (%)	Treated Carriers (%)	
											 Considering only deep SSI ra of the same surgeons before and after the intervention, overall infection rate—1.2% (9 741) vs 0.6% (8/1440)—and S <i>aureus</i> infection rate—0.7% (5 741) vs 0.1% (2/1440)—were both reduced
Murphy et al, 2011 [34]	Elective inpatient orthopedic surgery	Selective MRSA carrier's treatment Retrospective before and after intervention	5-d Course of intranasal mupirocin 3 times a day + daily chlorhexidine body wash and shampoo	Cefuroxime (vancomycin if MRSA carrier)	_	_	_	_	6/5825 (0.3%)	6/90 (6.7%)	 Patients with negati rescreening after treatment underwent surgery within 3 mo (positive rescreens were excluded) Deep sepsis rate in lower-lin joint arthroplasties was signi cantly higher among MRSA previously carriers—7.4% (2/ 27) in total hip and 6.9% (2/2 in total knee, than among no carriers—1.1% (11/982) in tot hip and 0.4% (4/1011) in totak knee despite confirmed suc- cessful preoperative
Barbero Allende et al, 2015 [35]	Joint arthroplasty (total or partial, primary or revision, elective or trauma)	Selective carrier's treatment Retrospective before and after intervention	5-d Course of intranasal mupirocin twice a day + daily chlorhexidine bath	Cefazolin or vancomycin if ß-lactam allergy up to 24 h	19/384 (4.9%)	9/309 (2.9%)	2/100 (2.0%)	9/384 (2.3%)	1/309 (0.3%)	1/100 (1.0%)	 decolonization Overall PJI rate was low albeit not significantly compared to historic controls—2.9% (12/49) vs 4.9 (19/384) <i>S aureus</i> PJI was significant reduced compared to historic control—0.5% (2/409) vs 2.3% (9/384) Overall PJI and <i>S aureus</i> PJI rat were similar between noncarriers and treated <i>S</i>
Schweizer et al, 2015 [36]	Primary hip or knee arthroplasty ^d	Selective carrier's treatment Multicenter retrospective before and after intervention	Intranasal mupirocin twice a day + daily chlorhexidine baths 5 d before surgery	Cefazolin or cefuroxime (vancomycin if MRSA carrier)	_	_		66/20,642 (0.32%)	17/11,059 (0.15%)		 aureus carriers The rate of complex S aureus SSI, but not all S aureus SSI, decreased significantly after I or knee arthroplasties (-17/10,000 operations) The decrease in overall SSI raconsidering all pathogens an all surgeries did not reach statistical significance
Baratz et al, 2015 [1]	Elective primary and revision hip or knee arthroplasty	Selective carrier's treatment Retrospective	Intranasal mupirocin twice a day + daily chlorhexidine baths 5 d before surgery	Cefazolin (plus vancomycin if MRSA carrier or ß-lactam	33/3080 (1.1%)	17/2763 (0.6%)	All carriers 7/644 (1.1%) MRSA carriers 4/158	21/3080 (0.7%)	13/3434 (0.4%)		- Both overall infection considering all pathogens—1.1% (33/3080) v 0.8% (27/3434)—and <i>S aureu</i> infection rate—0.7% (21/3080

766.e4

Table A.2 (continued)

		before and after intervention		allergy) up to 24 h			(2.5%) MSSA carriers 2/486 (0.4%)				vs 0.4%(13/3434)—did not decrease significantly after the intervention - Risk of infection in overall <i>S</i> <i>aureus</i> carriers was not significantly higher than noncarriers - MRSA carriers were
Malcolm et al, 2016 [4]	Primary hip or knee arthroplasty	Selective carrier's treatment Retrospective after intervention	Topical mupirocin twice daily for 3 d + chlorhexidine body wipes preoperatively	Cefazolin (or vancomycin if MRSA carrier or ß-lactam allergy) up to 24 h	Unscreened 16/1751 (0.9%)	8 cases (0.4%)	MRSA carriers 0 cases (0.0%) MSSA carriers 1 case (0.3%)	_	_	_	 significantly more likely to develop SSI than noncarriers or even MSSA carriers Rates of revision arthroplasty for any reason after at least 1 y was similar among screened and unscreened cohorts—1.0% (22/2291) vs 1.4% (25/1751) Risk of revision due to PJI was significantly higher in unscreened compared to screened patients—0.9% (16/ 1751) vs 0.4% (9/2,2291) After screening and decolonization, there were no differences in overall or
											revision due to PJI between preoperative carriers and noncarriers
Ramos et al, 2016 [37]	Elective primary hip or knee arthroplasty or primary spinal fusion	Universal treatment Retrospective after intervention	5-d Course of intranasal mupirocin or nasal povidone-iodine the day of surgery + chlorhexidine gluconate wipes the night before surgery	Vancomycin if MRSA carrier	_	11,309 THA (0.4%) TKA (0.7%) Spine (1.3%)	THA 8/939 (0.8%) TKA 18/912 (2.0%) Spine 10/668 (1.5%)	_	-		 S aureus preoperative colonization was a significant risk factor for SSI among total knee but not total hip or spine patients MRSA carriers had higher risk of infection than MSSA carriers—2.7%(10/367) vs 1.2% (26/2152)
Sporer et al, 2016 [38]	Elective primary total joint arthroplasty	Selective carrier's treatment Retrospective before and after intervention	Intranasal mupirocin twice daily + daily chlorhexidine baths 5 d before admission	Cefazolin (vancomycin if MRSA carrier or ß-lactam allergy) up to 24 h	16/1443 (1.1%)	33/9791 (0.34%)		_	_		 SSI rate was significantly lower after initiation of nasal screening—0.34% vs 1.1%. SSI rate dramatically decreased in the first year of implementation Saureus was involved in PJI less frequently after intervention although it did not reach statistical significance—66.7%
Sousa et al, 2016 [6]	Elective primary hip/ knee joint arthroplasty	Selective carrier's treatment Single-center randomized controlled trial	Intranasal mupirocin twice a day + daily chlorhexidine baths 5 d before surgery	Cefazolin (plus vancomycin if MRSA carrier or ß-lactam allergy) up to 24 h	Untreated carriers 6/139 (4.3%)	16/800 (2.0%)	3/89 (3.4%)	Untreated carriers 3/139 (2.2%)	9/800 (1.1%)	(2.2%)	vs 33.3% - Overall PJI rate was higher among <i>S aureus</i> carriers than noncarriers—3.9% (9/228) vs 2.0% (16/800), but it did not reach statistical significance - Treated and untreated carriers showed no significant difference either in <i>S aureus</i> or all pathogen infections

(continued on next page)

766.e5

Author	Target Population	Type of Intervention/ Study	Treatment Regimen	Perioperative Antibiotic Prophylaxis	Overall Infection			S aureus Infection			Major Finding(s)
					Control (%)	Noncarriers (%)	Treated Carriers (%)	Control (%)	Noncarriers (%)	Treated Carriers (%)	
Barbero et al, 2017 [2]	Total or partial hip arthroplasty for femoral neck fracture	Selective carrier's treatment Retrospective before and after intervention	5-d Course of intranasal mupirocin twice a day + daily chlorhexidine wash (most starting after surgery)	Cefazolin or vancomycin if ß-lactam allergy up to 24 h	Historic 10/138 (7.2%)	12/267 (4.5%)		Historic 6/138 (4.3%) Unscreened 2/62 (3.2%)	2/267 (0.7%)		 83 of 87 identified carrier underwent decolonization treatment after surgery <i>S</i> aureus infections wer significantly reduced in the intervention period compared to historic control—0.7% vs 4.3% Both cases of <i>S</i> aureus infection in the intervention group occurred in noncarriers
Tandon et al, 2017 [39]	Elective hip or knee arthroplasty	Selective MRSA carrier's treatment Retrospective after intervention	5-d Course of intranasal mupirocin 3 times a day + daily chlorhexidine baths + hair shampoo on days 1 and 3	Several different regimens; teicoplanin alone or with gentamicin in 58% of cases	_	_		_	81/6530 (1.2%)	5/79 (6.3%)	 Patients with negative rescreening after treatment underwent surgery within 3 mo—mean time interval 2.93 wk 4 patients with MRSA positive rescreens after treatment were excluded The relative risk of deep SSI in MRSA carriers was significantly higher despite treatment both in hip (4.46) and knee (5.6) patients
Jeans et al, 2018 [40]	Elective hip or knee arthroplasty	Retrospective study Case-control	Daily octenidine chlorhexidine wash + intranasal mupirocin 4 times 5 d before procedure, and 5 d after	_	69/3593 (1.92%)	131/9318 (1.41%)		_	_	_	 PJI fell from 1.92% to 1.41% with the screening and decolonization protocol (<i>P</i> = .03) The screening program was most effective in MSSA prevention in THA (3% to 1.5% <i>P</i> = .002)
Pelfort et al, 2019 [41]	Elective hip joint arthroplasty	Retrospective study Case-control	5-d Course of intranasal mupirocin 3 times a day + daily chlorhexidine baths	ß-lactam	17/400 (4.25%)	5/403 (1.24%)		8/400 (2%)	1/403 (0.24%)		 Incidence of 20.6% of S aureu nasal carriers, with an incidence of only 1.9% for MRS No nasal carrier who wa decolonized presented a SSI b this microorganism Reduction in global SSIs of 71 and a reduction in specific S aureus SSIs of 88%
Romero- Palacios et al, 2019 [42]	Primary or revision hip or knee arthroplasty	Retrospective before and after intervention	5-d Course of intranasal mupirocin twice daily + chlorhexidine baths	_	42/8505 (0.5%)	7/1883 (0.4%)		29/8505 (0.3%)	1/1883 (0.05%)		 No nasal carrier who we decolonized presented a SSI b this microorganism Significant reduction in PJIs du to S aureus by screening for ar decolonizing S aureus carriers before total joint arthroplastic No significant difference in overall infection rates was observed

MRSA, methicillin-resistant S aureus; MSSA, methicillin-susceptible S aureus; PJI, periprosthetic joint infection; SSI, surgical site infection; THA, total hip arthroplasty; TKA, total knee arthroplasty.

^a This paper also reported on cardiac surgery and hysterectomy but data presented here concerns joint arthroplasty exclusively.

^b This paper also reported on medical and other surgical patients but data presented here concerns orthopedic surgery exclusively.